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Abstract

A sensitivity analysis technique for multiloop flight control
systems is studied. This technique uses the scaled singular values
of the return difference matrix as a measure of the relative
stability of a control system. It then uses the gradients of these
singular values with respect to system and controller parameters to
judge sensitivity.

The sensitivity analysis technique is first reviewed; then it
is extended to include digital systems, through the derivation of
new singular-value gradient equations. These digital-system
gradient equations are a necessary extension to the technique when
real-world systems are to be analyzed. Gradients with respect to
parameters which do not appear explicitly as control-system matrix
elements are also derived, so that high-order systems can be
studied.

A complete review of the integrated technique is given by way
of a simple example: the inverted pendulum problem. The technique
is then demonstrated on the X-29 control laws. The X-29 control
system represents a high-order, digital, multiloop system and, as

such, 1s a good test case for the technique. Results show that



linear models of real systems can indeed be analyzed by this
sensitivity technique, if it is applied with care.

A computer program called SVA has been written to accomplish
the singular-value sensitivity analysis technique. Thus
computational methods and considerations form an integral part of
many of the discussions in this paper. A user's guide to the
program is included in an appendix. SVA is a fully public domain

program, running on the NASA/Dryden Elxsi computer.
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1. INTRODUCTION

Most designers of automatic flight control systems (AFCS) model
the aircraft being controlled by assuming that the aircraft's motion
can be described by a set of linear, time-invariant, differential
equations. These equations can be written in matrix form as
x = Ax + Bu , (1.1)
ector of aircraft states, such as roil
rate and bank angle, and u is a time-varying vector of commanded
control positions, such as aileron command and rudder command. A
and B are the 'dynamic matrices,' the constant coefficients of the
differential equations.

The commanded control positions u can come either from a pilot
or from an AFCS. In the latter case the commands can often be
modeled as feedbacks of the alircraft states:

u= -Cx. (1.2)
This system is depicted schematically in Figure 1.1. Equations
(1.1) and (1.2) combine to form the closed-loop dynamic system,
whose performance and stability characteristics can be very
different from those of the airplane described by Equation (1.1)
alone, which is called the open;loop system.

In general, the coefficients of the dynamic matrices (A and B)
are not exactly known. Errors in these coefficients are called
modeling errors and are due to two sources: the linearization of

the nonlinear aircraft dynamics (which yields Equation 1.1), and
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uncertainty about the actual dynamic characteristics of the
airplane. Control system design is intimately concerned with the
effect of modeling errors on the performance and stability of the
closed-loop dynamic system. Methods have been developed to deal
with modeling errors during both design and verification of a flight
control system.

During the design phase, Bode methods [2] have traditionally
been used to insure system "robustness” (in the form of gain margin
and phase margin)--that is, to insure that even if the actual
aircraft is different than the one for which the control system was
designed, the closed loop system will still be stable and have good
performance. Concurrently, efforts are made to identify the model
parameters as accurately as possible, so that the system can be
designed based on accurate information.

During the verification of an AFCS, two methods are usually
used to test the system in the face of modeling errors. Firstly,
the system is analyzed assuming some set of parameter variations, to
see if its stability and robustness are adversely affected.
Secondly, and usually subsequently, the actual system is flight
tested in a careful and systematic way to assess its performance.

The methods described above have worked extremely well in the
past, and are still applied extensively in present control system
design. However, modern aircraft are becoming more complex. For
instance, the highly augmented X-29 research vehicle is a 48th order

system longitudinally. Another example is the proposed F-8 oblique



wing airplane, which will be a fully coupled 6~degree of freedom
system, and will require a very high degree of augmentation.
Another complication for classical design resides in the fact that
modern control methods often result in many feedback paths. These
problems, complexity and multiple feedback paths, are not addressed
by the classical techniques for insuring stability and robustness.
This fact is apparent, once again, in both the design and
verification phases of AFCS design.

In the design phase, for instance, Bode techniques are only
strictly applicable to single-input single-output (SISO) systems
[1]. Designers of multiloop systems cannot use Bode measures
without some misgivings about their validity. Also, identifying the
dynamic model accurately 1s more difficult for complex aircraft, and
requires costly flight testing. For open—-loop unstable vehicles
such as the X-29, such flight testing cannot occur unless an active
control system is augmenting the airplane!

In the verification phase, analyzing the control system in the
face of selected parameter variations 1s very time consuming, and
invariably incomplete, when the system is of very high order. This
is because the number of parameters and combinations of parameters
which can be varied is very high. Finally, flight testing for
verification can be unsafe, because the control systems being
verified may be necessary to insure adequate stability and
controllability. Early airplanes often still flew if the control

system was flawed; this 1s no longer necessarily true. The result




is the necessity for costly, lengthy verification before any flight
testing can occur.

Thus many of the accepted techniques for insuring the stability
and robustness of AFCS have drawbacks in the context of modern
control design. Fortunately, methods have been developed to deal
with these problems. The goal of these efforts is often to extend
the well-understood classical concepts so that they can also be
applied to multi-input multi-output (MIMO) controllers. Many of
these methods are based on the singular values of the control system
return difference matrix, and on the gradients of these singular
values. Robustness measures, some of which parallel the Bode
measures of phase and gain margin very closely, have been developed
in [3] through [6]. Methods for designing robust controllers using
singular values are presented in [4], [7], and [8]. In [8],
Mukhopadyay and Newsom present a design method which uses singular
values and singular-value gradients.

In [1], Herrera et al. use the results of [8] to develop a
technique to extend classical sensitivity methods to modern MIMO
control systems. By using singular values and their gradients, a
control system, once designed, can be analyzed to determine those
parameters, out of the many that describe the control system, which
affect the stability and robustness of the closed loop system most
dramatically. Identifying these parameters eliminates the need to
identify all the system parameters very accurately. This relieves

somewhat the necessity for intense parameter identification efforts.




It also allows parameter—variation type testing to be done in a
systematic and complete way.

The work of Herrera et al. was performed under NASA contract
NCC2-293, which was awarded to the University of Kansas for the
development of a sensitivity analysis technique for continuous
multiloop systems. The technique resulting from phase one of this
contract is documented in [1] and [9] and consists of computing the
singular values of the return difference matrix and the gradients of
these singular values with respect to model parameters. During
phase one, this technique was applied to several low-order systems,
to determine the characteristics and viability of the method.

This report details the work done during phase two of NCC 2-
293. The primary goals of this phase were to install the software
for the singular value analysis (SVA) technique at Ames Research
Center, Dryden Flight Research Facility, to test it on real systems,
and to familiarize Dryden personnel with the technique and with
singular values in general. To fulfill these goals, several
improvements had to be made to the SVA developed at KU. First of
all, the analysis had to be extended so that digital systems could
be analyzed. In addition, optioné were added to the software to
deal with problems which arise when one is analyzing complex
systems. Finally, work was done to make the software easy to use.

This report is organized as follows: Section 2 gives a

theoretical background and mathematical derivation of the SVA.




Section 3 extends the derivation of the singular-value gradients to
include digital systems. The SVA technique is illustrated in
Section 4 for a simple example of an inverted pendulum. Section 5
presents results obtained for a real system (the X-29) at NASA-
Dryden. Appendix A contains those derivations which are considered
too involved for the text; Appendix B tabulates numerical data for

the X-29; and Appendix C describes the SVA program.




2. BACKGROUND

This section reviews the results of Herrera ({l1] and [9]).
Section 2.1 reviews the Bode technique, and details the problems
which motivate the use of singular values; these problems were
discussed briefly in the introduction. Section 2.2 then gives a
mathematical description of what singular values represent in the
context of control system design. Section 2.3 elaborates on the use
of singular values as measures of robustness, discussing their
shortcomings and giving some alternate ways to apply them. Finally,
Section 2.4 describes singular value gradients, their derivation and
application. Qualitative results from [1] will give helpful insight

into the SVA in this and future sections.

2.1 THE NEED FOR A MULTILOOP ANALYSIS METHOD

Figure 2.1 is a block diagram of a typical single-input,
single-output (SISO) control system. The Laplace domain transfer
function g(s) represents the dynamics of the aircraft being
controlled. h(s) is the control system transfer function; it models
all compensation aﬁd feedback géins. The transfer function 1(s)
represents any disturbances or variations in the system, either due
to plant parameter variations or controller parameter variations.

The closed loop transfer function of this system is
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Figure 2.2: Example of a Bode plot with misleading
gain and phase margins




where u(s) and r(s) are the Laplace transforms of the input to the
open loop system and the input to the closed loop system,
respectively. Both u(s) and r(s) are scalars. Obviously, u(s) will
be unbounded for a bounded input 1if
lhg(s) = -1. (2.2)

The Bode method checks for closeness to instability by applying a
sinusoidal input, r(t)=sin(wt). [2] shows that this yields the
criterion

|1hg(jw)| =1, Llhg(jw) = -180 degrees, (2.3)

where j= /=T .
When this condition is fulfilled, the system has a pure resonance,
and thus is on the boundary between the stable and unstable regions.
Closeness to instability is judged by giving 1 the special form
1=kej¢, which represents a disturbance in both the gain and phase of

the system:

jwt

sin(wt) = Imagle 1,

ksin(ut + ¢) = Imag[ed®t « ked?®] . (2.4)

Gain margin (GM) and phase margin (PM) are then defined as follows:
M = the value of k which causes
condition (2.3) to be met if ¢=0 (no phase change).

™ = the value of ¢ which causes
condition (2.3) to be met if k=1 (no gain change).

The definitions for GM and PM will only be fulfilled at certain
frequencies. The GM criterion can be satisfied only at frequencies

where Llhg(jw) = -180, and the PM criterion can only be satisfied at
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frequencies where llhg(jw)l = 1 (or 0 dB). To check for these
points, one must plot lhg(jw) for varying w. The most popular way
to do this is using a Bode plot, but Nyquist diagrams and Nichols
charts are also used for various applications. Figure 2.2
illustrates the definitions of GM and PM on a Bode plot.

One can apply the technique above to multiloop systems, but
only in a limited way. Figure 2.3 illustrates how this 1is done.
Consider the two-loop control system shown in 2.3(a), where G(s) now
represents a two-by-two matrix of transfer functions, all of whose
elements may be nonzero. This system can be analyzed using
traditional Bode methods by introducing a perturbation i=ked? into
one loop of the system. The analysis then procedes as above, with
the assumption that the other loop is a fixed part of the 'open-
loop' dynamics of the plant, as shown in 2.3(b).

Two possibilities are ignored by this type of analysis. The
first is the possibility that the perturbation 1 may actually
destabilize the h; loop in Figure 2.3. The second is that if the hy
loop varies in some way (gain or phase), and is not fixed as
assumed, the outer loop gain and phase margins may change
drastically.

Taking these kind of possibilities into account is analagous to
avoiding a steep slope in either the gain or phase curve of a
single-loop Bode plot. If, for instance, the phase curve of a SISO
system is steep at the frequency of a shallow gain crossover, a

slight change in gain could cause the phase margin to change
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Figure 2.3: Diagram of classical technique for studying

perturbations in multi-input 'multi-output
systems

Figure 2.4: 2-dimensional illustration of a matrix as a
vector transformation
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drastically. This situation is illustrated in Figure 2.2 (this Bode
plot may not actually be physically realizable; it is used here only
as a graphic illustration). Thus a system is not necessarily robust
even if it has acceptable gain and phase margins.

Apparently, a good measure of nearness to instability would

take into account simultaneous changes in gain and phase in all the

some necessary mathematical concepts are introduced.

2.2 VECTOR AND MATRIX NORMS, SINGULAR VALUES, AND THEIR APPLICATION

The concept of stability in the scalar case presented above
depended on the idea that the input u(s) to the plant should remain
bounded in the closed loop system. For an n-dimensional vector of
inputs, this boundedness criterion can be extended by using the

vector Euclidian norm, defined as

/n
Ix{ = Ix 2

i

= /gi; . (2.5)

Ix§ can be interpreted as the length of the vector x in n-space.
Complex vectors utilize a slightly different definition to yield a

"length”., If x = u + vj, then the norm is defined as

//h
Ixl = ifl(ui + vij)(ui - Vij)

= /:?; , (2.6)
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where x* 1is the conjugate-transpose of x.

The analysis to be presented also requires the "size" of a
matrix to be quantified in some way. This is easily done by
thinking of a matrix A as a linear transformation, which transforms
any compatibly dimensioned vector x into a vector Ax which has been
stretched and rotated in n-space. The "size" of A, then, can be
thought of as the maximum or minimum possible change in size, or

"stretching factor,” that A can cause as a transformation. This is

in fact how the matrix Euclidian norm is defined; mathematically

this 1is written

max
IAl = or (ﬂéfl) for all x ,
Ixl
min
max
or IAl = or (W#Axl) for all x such that Ixi = 1 .
min

(2.7)
Figure 2.4 shows the interpretation of this matrix norm in 2-space.
The vector x is allowed to vary in any way, as long as its length
remains unity. As it traces a circle, Ax traces an ellipse. The
maximum and minimum lengths of the resulting vector are the
Euclidean norms of the matrix A.

When the experiment described above is performed om an n-
dimensional matrix a hyperellipsoid (or a degenerate thereof,
depending on the size and rank of the matrix) always results. Now
suppose that in Figure 2.4 we are able to break the transformation A

into a rotation of the axes and a standard equation for an ellipse,
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2,7 2.8)

;5 +-;Z = 1. (2.
It is apparent that a and b, which are half the major and minor axes
of the ellipse, are the norms of A that we defined in Equation
(2.7). The singular value decomposition breaks the transformation A
up in exactly this way. The basic theorem of the singular value
decomposition is that any matrix A can be represented as USV*, where
U and V are unitary matrices (which means that their transformations
yield no change in length, only rotations), and S is a diagonal
matrix of singular values, which are denoted by oy, i=l..n. The
singular values are half the lengths of the axes of the
hyperellipsoid created by {Ax, x: |ixi = i}, and the waximum and
minimum singular values, o and g, respectively, are the matrix
Euclidian norms. Proofs of both the singular value decomposition
theorem and the fact that singular values correspond to norms are
presented in Appendix A, taken from References [l10] and [l1].

We now have all the necessary tools to conduct a multiloop
frequency response. Figure 2.5 represents a MIMO system, in which
U(s), R(s), and X(s) are vectors and L(s), G(s), and H(s) are
matrices. The equation for the matrix of transfer functions for the

closed loop system has a form analogous to Equation (2.1),

(I + HCL(s)]-IR(s)

U(s)

TR(s). (2.9)
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In this case, however, boundedness will be defined with the help of

norms. The "size" of the input-output relation is given by

10(s)t _ WTR(s)I
TRCSST - TRCT (2.10)

The maximum of (2.10) translates directly into singular values using
the definition in equation (2.7):

max %%%%%%l = ITI = o(T) = ol(I + HGL(s)“I] =

1
ofT + HGL(s)] °

(2.11)

where a special property of singular values has been used for the
last equality. This property is proven in Appendix A. Now we can
eay that A0l will be unkoy
(I+HGL), which is called the return difference matrix, is zero.
This condition can be checked across the frequency range [3] by
testing the criterion

o[I + HGL(jw)] = 0 (2.12)
for all w of interest. When this equation is satisfied, a pure
resonance at w exists. This resonance can be interpreted as a pole
of the closed loop system on the imaginary axis, which means the
system is on the "stability boundary”. It is important to note that
singular values, because they are the absolute "lengths" of a
transformation, will always be nonnegative. So if the original,
unperturbed closed-loop system is not on the stability boundary
represented by Equation (2.12), the minimum singular value of the
return difference matrix will be positive, whether the system is

stable or unstable. This situation is analogous to that presented

by the Bode plot, which also gives no indication of stability.
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If the unperturbed system is stable, norms can be used to
represent nearness to instability. To this end we take L to be a
diagonal matrix whose elements are analagous to the single loop

perturbation 1.

h [ i [
L= diaglkpe |, ke  S,u.ck e U] (2.13)

ki and ¢4 (i=1,n) may vary independently in any way. The system
will remain stable if the following criterion, based on (2.12), is
met: L must be smaller than the smallest matrix J for which

oI + HGI(jw)] = O (2.14)
at some w. This 1s analogous to the gain and phase margin concepts
in SISO systems, except that in the case of singular values, all the
gains and phases may vary simultaneously to achieve the stability
boundary. It can be shown that criterion (2.14) will be met if the

following equation is true:

o[l + HG(jw)] > G(L'1 -1I) . (2.15)
See Appendix A for the proof of this fact. [3] also shows that it
is possible to rewrite the right-hand side of the above equation in

terms of the maximum values of k; and ¢; in the matrix L:

_?x(L'1 - 1) = ¢Q1 - gl )2 + kz (1 - cosg_ ) - (2.16)

max max

To judge nearness to instability, combine Equation (2.15) and

(2.16) through the following steps:

1. Compute g[I+HG(jw)] for various w's. The resulting plot is
called a 'g-plot.' It traces the nearness to singularity of the
return difference matrix, and thus the system's robustness to
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perturbations, with changing frequency. Note that the
perturbation L need not be known to compute the g-plot.

2. Determine the minimum of the o-plot. This will be denoted by

Snin® Smin OCCUTS at the frequency at which the system is nearest

to the stability boundary.

3. 1If ;[(I + L)-l] <g min’ the system will remain stable. Thus

if all k; and ¢; are properly bounded by Equation (2.16), the system
will remain stagl

presented as a
for gain and phase margin evaluation" [3]; this diagram is shown in
Figure 2.6. An example will illustrate its use. If the smallest
9(I+HG) for a system is .6, then the closed-loop system will
tolerate simultaneous gain and phase changes of -1.5 dB to 5.3 dB,
and -30 deg to +30 deg, respectively, in all input loops. 1In a
classical sense, when either gain or phase is changed while the
other is held constant, the margins are -4.2 dB and +8 dB or +35
deg, respectively. The latter results can also be obtained by
alternately setting gain and phase to zero in Equation (2.16),

ylelding the following Equations [5,6]:

M = , (2.17a)
1+ g-min
' 2
- (g_.))
PM = + cos 1(1 - “‘é“
if o <2,
1,%nin “min
= & 2sin ( 7 )
and PM = + 180 if g > 2
(2.17b)

It is important to note that Equation (2.15) is a conservative

condition and that 1t is possible to construct a matrix L which
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evaluation (Reference [3])
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violates it, yet fails to drive the system all the way to the
stability boundary. In other words, the minimum of the g-plot is
the size of the smallest L which will drive the system to the
boundary [19], but there are many matrices of the same size that do
not drive it that far. However, no matrix of disturbances which is
"smaller” than the matrix in Equation (2.15) will destabilize a
{2.16) is a guaranteed allowable limit for all
the gain and phase changes in the matrix L.

It is instructive at this point to give a SISO example to
illustrate the similarities and differences between classical and
singular-valune-based techniques. TFor a STSO system the return
difference matrix is the scalar [1 + hg(jw)]. The singular value of
this scalar is simply its magnitude. The frequency response of the
system, on the other hand, is hg(jw), which is a complex number for
each w. Therefore, if the frequency response is plotted on a
Nyquist diagram, as in Figure 2.7, the singular value is simply the
distance from the instability point, -140j, to the Nyquist plot!
This characteristic can be seen in Figure 2.9, which is the g-plot
corresponding to Figure 2.7.

GM on a Nyquist plot is taken at the point(s) where the curve
crosses the real axis to the left of the origin (i.e., L hg(jw) =
-180 degrees). PM is taken at the point(s) where the curve crosses
the unit circle (i.e. |hg(jm)| = 1). In Figure 2.7, the GM occurs
at w = 2.6 rad/sec and is .34 or ~-9.3 dB. A PM of +38 degrees

occurs at w = 19 rad/sec.
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oM =

1+ g

PM = +cos (1 - } 22)

8.0

Figure 2.7: Illustration of the minimum singular value of the
return difference matrix on a Nyquist plot (SISO)

Figure 2.8: Example of a Nyquist plot with the same minimum
singular value
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Figure 2.9: Singular-value plot for the system whose

Nyquist plot appears in Figure (2.7).
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In contrast, the singular value analysis calculates
simultaneous GM-PM limits by finding the point on the curve which is
nearest to the stability boundary of -1+0j. 1In Figure 2.7, this
occurs at 27.5 rad/sec. This point can also be found in Figure 2.9;
it is simply the absolute minimum of the curve. It can be seen in
Figure 2.7 that the system will be driven to -1+0j at 27 rad/sec by
a gain variation of 1.5 or +3.7 dB combined with a phase variation
of 32 degrees. The "size" of this variation corresponds exactly to
the minimum distance from the curve to the -1 point, and can be
found, using Equation (2.16), Figure 2.7, or Figure 2.9, to be .S56.

Equations (2.17a) and (2.17b) arise by drawing a circle of
length gmin around the -1 point. This must be done because the SVA
provides no information about the direction one must go to get to
the stability boundary. For instance, the curve in Figure 2.8 would
yield the same Snin 38 Figure 2.7. So to guarantee that the system
will remain stable in the face oflégz_simultaneous variations (NOT
Jjust the one mentioned above) the gain and phase margins must be
. Thus the

in

"classical” GM and PM occur where this circle intersects the real

valid for any point on the circle of radius S

axis and the unit circle, respeétively. These values will not
necessarily match those obtained using the true classical
definitions of GM and PM. As can easily be seen in Figure 2.7, they
will be conservative. The conservativeness is much less easy to

interpret in the MIMO case, because Figure 2.7 cannot be
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constructed. Only the information one can glean from figures like
Figure 2.9 is available.

In an effort to reduce the conservativeness of the gain and
phase margins predicted by Equations (2.16) and (2.17), References
[3] and [6] studied the use of eigenvalues instead of singular
values. The minimum eigenvalue of the return difference matrix will
also be zero when the system is on the stability boundary. Thus a
plot of A traces the matrix's nearness to singularity in complex
space. However, ﬁo rule like Equation (2.16) is available for
eigenvalues unless the disturbance matrix L is taken to contain only
'uniform' uncertainties. For the uncertainties to be uniform, the
matrix L must have the form kej¢[I]; that is, the gains and phases
along the diagonal of L must vary together, instead of
independently. Reference [6] shows that the universal gain and
phase plot in Figure 2.6 can be applied using the minimum eigenvalue
under the restriction that the gain and phase variations be uniform
as described here.

Reference [1] is an extensive study of g-plots, and includes
several examples which compare MIMO (g—plot) results to SISO (Bode
plot) results. Some of the chafacteristics of o-plots discovered in
[1], which will become evident in future chapters of this report,

are

1) The effects of poles or "modes” of the system can be seen in
o-plots. Usually a dip or peak occurs near the frequency of each
pole of the closed-~loop system.

2) As discussed above, it is not possible to determine if a
system is stable or unstable by looking only at o-plots. Only the
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nearness to the stability boundary, and a conservative estimate of
the minimum gain and phase changes necessary to drive the system
there, can be determined.

3) A plot of the eigenvalues of the return difference matrix on

the same graph as the o-plot is a useful addition to the analysis.

Because it is based on a relaxed criterion (that all gains and
phases must vary together), it will always lie above the o-plot.

The conservativeness of the g-plot can be qualitatively jﬁdged by
the distance between the g-plot and the eigenvalue-plot.
4) Some rules of thumb for singular values are:

For a system which will have a multiloop gain margin of
+10dB and a multiloop phase margin of +40 degrees, keep
the o-plot above .684.
A g of 1 represents a system which is robust in the
optimal sense; it has a gain margin of +» and a
phase margin of 460 degrees.

Because of the way multiloop gain and phase margins are
defined, the use of a +10dB and +40 degrees rule of thumb may be too
stringent. This rule was probably developed in part to absorb some
of the under-conservatism of Bode plots, which do not take
simultaneous changes into account even for single-loop systems. It

has been found that a minimum ¢ of .4 - .5 usually still represents

a good design.

2.3 ELABORATION OF THE CHARACTERISTICS OF SINGULAR VALUES

The analysis presented in Section 2.2 has many attractive
properties, but recent work indicates that it contains many flaws
and complications. These will be discussed in detail in this
section so that anyone using the analysis presented in this paper
will be fully aware of the shortcomings and subtleties of singular

value analysis.
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Several of the complications involved with singular values stem
from the unstructured nature of the matrix L in Equations (2.14) and
(2.15). Although a special form is chosen for L in Equation (2.13),
the derivation of Equation (2.15) is valid for any matrix L (see
Appendix A). What this means is that even if L has non-zero off-
diagonal elements, one can still gaurantee stability as long as
condition (2.15) is met. Non-zero off-diagonal elements in L
constitute cross—-feed perturbations between feedback loops. These
are not part of the definitions used in Section 2.2 for gain and
phase margin, yet Equation (2.15) always allows for these type of
perturbations. Thus a more stringent requirement on the size of L
must be met in Equation (2.15) than that indicated by the special
form of L in Equation (2.13). This is another reason (beyond that
described in the SISO system example of Section 2.2) that the gain
and phase margin predictions in Equations (2.16) and (2.17) are
conservative [19]. Thus eigenvalues, which do indicate the
sensitivity to a truely diagonal perturbation, are a very important
additional tool, although they represent a perturbation that is
somewhat too structured.

A more drastic consequence of the unstructured nature of the
matrix L is that the singular values of the return difference matrix
are not invariant under scale changes [17]. In other words, if the
units of the control power variables or the units of the states are
changed (and the gains in the feedback loops are changed according-

ly, so that the unperturbed closed-loop system characteristics have
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not been altered by the scaling), the singular-value plot can
change. This fact makes obvious physical sense when one considers
cross-feed perturbations: if the units of some of the feedback loops
change, and the signals in these loops are allowed to cross-feed to
other loops, the boundaries on the allowable crossfeed
multiplication factors will change. The upper bound for the size of
the L matrix can thus go up and down with scale changes, and the
predicted gain and phase margins will change accordingly.

The singular values of a scaled system will always be upper-
bounded by the eigenvalues of the return-difference matrix, which
are invariant under scale changes [17]. The actual or true gain and
phase boundaries as defined by Equation (2.13) are also invariant
under scale changes, because they represent perturbations on each
loop as it feeds back on itself, and so scales are unimportant. But
the singular values will usually underpredict these true margins,
because they are accounting for cross—feed disturbances, which can
destabilize the system very easily if the units chosen for the
system are disadvantageous.

The solution to the problem of the variability of singular
values with scaling depends on the control designer's goal. If he
or she wishes to study the effects of unmodeled cross-feeds (such as
unmodeled coupling between certain states), then he or she must
choose units for the system such that all channels will have the
same relative magnitudes during the normal operation of the plant.

This type of scaling accounts for crossfeeds, but between channels
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whose magnitudes are similar. Multiloop gain and phase margins
(Equations 2.16 and 2.17) are not particularly meaningful here; the
singular values should be interpreted as the allowable 'size' of a
fully populated L matrix. On the other hand, if the designer
desires to look at multiloop gain and phase margins, which are
structured as in Equation (2.13) and do not account for crossfeed
perturbations, then he or she should look for the system scaling

which yields the largest g[I+HG(jw)] Since diagonal

min®
perturbations will have identical effects on the scaled and unscaled
systems, the boundaries predicted for the 'best possible' scaling
can be applied to the unscaled system, and a much less conservative

multiloop gain and phase margin will result. It is important to

note, however, that boundaries on unstructured L matrices are valid

only for the scaling under which they are computed [17]; they cannot
be applied to other scalings of the system, because this would
involve cross-feeding between feedback paths which have different
relative dimensions than those used when the boundarieé were
computed.

Assuming that the system has been scaled appropriately, the
designer can further reduce the conservativeness of singular-value
plots by looking at the problem in a subtly different way. If in
Figure 2.5, L is replaced by L+I, which represents an additive
perturbation, the stability criterion becomes

o[L(s)] < o[I + (H&) L(s)] » (2.18)

which, when L has the diagonal structure of Equation (2.13), reduces
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to the gain and phase boundaries {[17]

- 2
= - - 2.1
. o(L) /Q1 ko) + 2k (1= cosp ) (2.19)
GM =14%g in’ (2.20a)
= -1
PM = #2sin (g ln/2) if ¢ < 2, 180 if 9in > 2  (2.20Db)

Since these boundaries are also sufficient but not necessary
(which means they are conservative), the information they yileld is
complimentary to that obtained from the plot of g[I+HG}. In other
words, it 1is valid to use the boundary which is least conservative.
[I+(HG)_1] is called the inverse return difference matrix, and is
easily computed along with the return difference matrix at each
frequency. However, the inverse return difference matrix will not
be utilized in this paper for several reasons. The first is that
the plots of ¢[I+HG] and g[I+(HG)‘1] tend to be very similar, so
that very little new information is generally gained from plotting
both. Furthermore, unlike o[I+(HG)™!], g[I+HG] can be thought of as
a Nyquist plot distance. It lends itself to intuitive
interpretation much more easily. Finally, the gradients of
9[I+(HG)'1] are not yet available. Gradients will be introduced in
Section 2.4 for o[I+HG], and they form an integral part of our
sensitivity analysis procedure. For these reasons g[I+HG] will be
used exclusively throughout the rest of this paper.

The final complication to the singular value analysis is that
the location of the disturbance matrix L in the control system is
important to the resulting gain and phase margin predictions [18].

This results both from the scaling phenomenon described above, and
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from the fact that gain and phase perturbations in different parts
of the loop actually have different effects. Unlike SISO systems,
in which the location of the disturbances is unimportant, MIMO
systems can have cross—feed interactions which cause the locations
of phase and gain perturbations to be important. The most important

locations for the disturbance matrix L are the plant input and thé

at location 1 in Figure 2.10 ylields a robustness measure which is
based on the transfer function between R(s) and U(s) in Equation
(2.9). This i1s the measure which we have been discussing up to
now. Placing L at location 2 gives a robustness measure based on
the following transfer function, between disturbances W(s) and

inputs to the control system Z(s),

Z(s) = [I + GH(s)] ‘W(s)- (2.21)

Alternatively, we can simply analyze the system as 1f the plant is
the controller and the controller is the plant. In other words,
treat G as H and H as G, and then éll the equations for L placed at
location 1 will apply to L placed at location 2. The details of the
derivations for location 2 will not be discussed, since they are
trivial variations on those for location 1. Placing L at these two
points can yleld very different stability boundaries, and
sensitivity information subsequently derived can also be very
different. Thus it is Important to do the analysis at both points.

At this point, the importance and usefulness of scaling the

system appropriately takes on more meaning. At the plant input the
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scaling should have the goal of maximizing the singular values,
because it is rare for crossfeed perturbations to occur within a
control system. Thus the structured or diagonal form of L is the
most realistic measure of robustness. At the plant output, however,
crossfeeds may occur within the actual plant which were not modeled
when the control system was designed. So, to insure a realistic
measure of robustness at the output, the scaling used should cause
all the states in x to vary within the same range during the normal

operation of the plant.

2.4 SINGULAR-VALUE GRADIENTS

Now that we have a good idea what singular values are and what
they mean, we are ready to understand the usefulness of singular-
value gradients (also known as g-gra?ients). The term "singular-
value gradients” was adopted from Reference (8], where the matrix
gradients were used in a gradient search design method; here a more
appropriate term might be "singular-value partials” because we
interpret elements of the matrix gradients as sensitivities, or
partials of ¢ with respect to the corresponding element of the
matrix. A more detailed explanation follows.

The goal of a sensitivity analysis is to identify those
parameters, whether they be aerodynamic, control power, or control
system parameters, which most greatly impact the stability and/or
performance of the closed loop system. Since the minimum singular

value, ¢, is a measure of relative stability, parameters p for which
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aglap is large are potentially important parameters. We will
describe "how large is large” later. At any rate, if we can compare
dg/3p for all the possible "p's" in the system, we can rate the
parameters in the order of their importance, taking into account
their relative sizes and accuracies. This is the singular-value
analysis which we will now develop mathematically.

Consider the state—-space representation of the control system
of Figure 2.5 to be given by

Plant:

X = Ax + Bu (2.22)

z =Tx (2.23)

Control Law:

u=-XKz+r (2.24)
Equation (2.22) represents a plant of order NS having N, output
measurements, g, modeled by Equation (2.23), and N, control inputs,
u. Equation (2.24) represents the feedback control law driven by
the sensor output, z, and reference input signal, r. In terms of
transfer matrices (taking Laplace transforms), the control law is
given by

U(s) = -K[T(Is - A) “B]U(s) + R(s) (2.25)

Therefore, the control input can be written as

U(s) = [I + HG(s)] ‘R(s) (2.26)

where H(s) = K and G(s) [T(Is-A)'lB].

Equations (2.22) to (2.24) can be written in an augmented form

as
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x = Ax + Bu, (2.27)

Cx +r, (2.28)

u
where A = A, B = B, and C = KT (this notation is used to conform to
the notation in Reference [3]). Then the Laplace transform of the

control input can be expressed as follows:

U(s) = [I + C(Is - &) 1B1 IR(s) , (2.29)
and, therefore, the return difference matrix, (I+HG), can be

represented as

(I + HG) = [I + C(Is - K)'lﬁj- (2.30)

In the case in which the control law includes controller
dynamics, a similar derivation would be involved [3], but the
computation of A, B, and C , would be different. The A, B, and C
matrices can also be found for the case where the loop is broken at
the plant output. The resulting transfer function is between
disturbances at the sensors [W(s) in Figure 2.10] and the output
vector, Z(s). The analysis then proceeds exactly as follows, with
the realization that the elements of A, B, and C may be different
than those for the input case.

The singular values of (I+HG) are oi(s) » and the corresponding
right and left normalized singular vectors are v;(s) and uy(s),
respectively (these are simply columns of the matrices U and V which
result from the decomposition of (I+HG) into USV*). Hence by

definition

(I +HG)v, = w0, (2.31)
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*
(I + HG) u, = v,0 (2.32)

for i =1, 2, ... N,, where W means the conjugate-transpose of W.
The normalized eigenvectors satisfy the following orthogonal
properties:

“i*vj = Gij and vi*vj = Gij’ (2.33)
where Gij is the Kroneker delta which is unity when i=j and zero
when 1 # j.

Let p be a parameter for which sensitivity information is
needed. Differentating Equation (2.31) and (2.32) with respect to p

*

*
and then premultiplying the result by u, and Vi respectively, and

adding them together, one obtains

* ov

* 3(I + HG) * 3(I + HG) * Lk i
ui —3_p__v1+vi Tui+ [ui (I + HG) Vi Ui] -a—p-—'l'
+ (v, (1 + He)" P S +v° 2.34
(vy ( ) Ty o) 55 T (et vy vy) (2.34)

Using Equation (2.31) to (2.33) in (2.34), one obtains

3011 o AL HEG) ka4 He) (2.35)

op 21 op i i op i :

Notice that the first and second terms in the right-hand side of the
equation are complex conjugates. Therefore, Equation (2.35) can be

written as

a0
i_ * 3(I + HG)
o Real part of [u1 5 vi]
- * 3(1I + HG)
Re[ui _af)—_- vil (2.36)
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Using Equation (2.30) and letting

= (Is - )7}, (2.37)

Equation (2.36) can be written as

aci(I + HG)

3(I + CoB) *
———_—-—.v
ap

= Re « tr [ 5p iui ]

(2.38)

where tr[W] means the trace of W and is equal to the sum of the
elements in the principal diagonal of W. Equation (2.38) can be

expanded as

a0
i A aC
—5p = Re tr[{Co » o8 + Co 2B 4 = ¢B} v,

3p | 3p u

(2.39)

It is now possible to obtain three expressions for aollap, one

for each of the following cases:

1) The parameter p is an element of K, i.e., p =

2) The parameter p is

3) The parameter p is

an element of B, i.e., p =

an element of C, i.e., p = p=-.

The resulting expressions are
904 3k *
—— = Re * tr[CO —— OBv u, ] (2.40)
apK apA 11
a0y - 38 *
7?—_-_- = Re o tr[C¢ a—-: viui ] (2'41)
B B
301 Yo *
5= = Re © tr{=— ®Bv,u, ] (2.42)
apé' pc i1
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By recalling the following matrix operation [12],

3z ler{vxz}) = v'2* (2.43)

(where 3/9X indicates element-by-element derivatives),

and the matrix trace property [8],

*
Restr(A) = Re » tr(A ) (2.44)
it is possible to extend Equations (2.40) through (2.42) to matrix

form. For K,

90
L. [Re-tr{E@K@E(viui*)}]
35 oA
= Re[(To)" (#Bv,u,")") (2.45)

where aci/aZ is a matrix whose elements are aoilaa . Using the

ij

transpose of A simplifies this expression further.

30'1
AT

- Kem ‘
2.4
Re[¢Bv u, Co] (2.46)

Similarly, for B,

aoi

9B

Re[(C8) “(vyu, "] (2.47)

or using the transpose,

aoi
3BT

Re[(viui*)éa] (2.48)

and for matrix C,

301

aC

Re[IT(¢§(viui*)*] (2.49)
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or using the transpose of E,

aoi

acr

= Re(@l-iviui*) . (2.50)
Expressions (2.46), (2.48), and (2.50) can be used to evaluate
the singular-value gradients with respect to elements of the system
and controller matrices. Note that the gradients, like the singular
values, are functions of frequency; thus singular-value-gradient

plots (or g-gradient plots) can be obtained over a range of

frequencies for each element of interest. Note also that the

information necessary to obtain the gradients 1is already available
from the calculation of the g-plot (if ¢ is evaluated explicitly).
fhis is because v; and uy are products of the calculation of the
singular values. Therefore, if one is computing the g-plot, and ¢
is directly available, little additional computational effort is
needed to calculate the g-gradient plots.

To determine the frequency at which a particular g-gradient
plot is most important, we ask the following question: What is the
smallest percentage change in p necessary to drive the singular-
value plot to an undesirabiy low value? If we choose the
"undesirably low value” to be .2 (which translates into a GM of -1.6
to 1.9 dB and a PM of #11.5 degrees), this question can be written

mathematically as

min (A min | € T Sva
o<w<~[-%l ) B (2.51)

(3p7p)
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Where the "normalized" singular-value gradient has been employed to
account for differences in the size of different elements. For each
parameter there is a frequency for which the above expression is
minimized.

Graphically, Equation (2.51) finds the frequency and Ap/p for
which the situation illustrated in Figure 2.11 occurs. 2.11(a)
shows the original system og-plot, and 2.11(b) shows a sample
normalized gradient curve for the same system. If the Ap/p found
from Equation (2.51) is introduced, the resulting perturbed-system
o-plot is shown in Figure 2.11(c). The frequency where Equation
(2.51) is minimized is the point where the perturbed plot touches
the g=.2 line in Figure 2.11(c). Note that this frequency does not
necessarily correspond to the frequency of the minimum of the
original g-plot.

The SVA approach is to compile a table of parameters,
indicating for each one the minimum percentage change it must
undergo to drive the system nearly unstable. This table is a first
step Iin determining the parameters that are of greatest
importance. The other steps to be taken are

1) Determine whether the frequency at which the parameter
effects the singular value is a critical one. If the Ap/p required
is relatively small but not extremely small, and the frequency of
its effect is either very low (such as a parameter which excites a

spiral instability) or very high (such as a structural mode which

the pilot will not be able to notice), the parameter may be judged
to be relatively unimportant.

2) Obtain an estimate of the accuracy of the parameter. If the
system is extremely sensitive to a certain parameter, but that

parameter is known to a high degree of accuracy, then the parameter
is not important.
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3) Determine whether the parameter can vary independent of other
parameters. This is an extremely important point, because elements
of a block diagram which has been augmented to an aircraft often
make up several elements of the A or B matrix, which must change
together. This problem is dealt with in Section 4.

4) Check to make sure that the linearity assumption made in the
first-order approximation shown in Figure 2.11 is wvalid. If o must
change by more than about 45% in order to reach the minimum alowable
level, than this approximation is generally not very good [23].

5) Check the sizes of the other singular values (that is, those
that are not the minimum), and of their gradients. If some of the
other singular values are relatively small and/or there gradients
are large, they must be included in the tabulation of sensitivities.

6) Perform the SVA and steps 1) through 5) for the system with
the loop broken at the plant output.

Only after all of the above steps have been taken can a good picture
of the sensitivity to a parameter be determined.

Figure 2.12 recaps the SVA. It must be conducted for the loop
broken at both the plant input and the plant output. First, the
o-plot of the unperturbed system is calculated, along with the
closed-loop system eigenvalues. System scaling should be optimized
at this point, and the scaling chosen should then be used for the
rest of the analysis. The g-plot will tell the designer the minimum
singular value, and therefore the phase and gain margins of the
unperturbed system, using the universal diagram (Figure 2.6) or
Equations (2.17a) and (2.17b). The closed loop eigenvalues must be
calculated to determine whether the system is stable or not. It
must be stressed that the closed-loop eigenvalues are not to be
confused with the eigenvalues of the return difference matrix, which

are plotted against frequency like the singular values. The second
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step in the sensitivity amalysis is to evaluate the singular-value
gradients (g-gradient plots) for the unperturbed system. These
gradient plots can then be reduced to a table of minimum parameter-
variations required to drive the system to some predetermined level
of relative stability. This "minimum allowable™ level of relative
stability is represented by a minimum allowable value of the o-
plot. The next step is to evaluate the g-plot, closed-loop system
eigenvalues, and any other desired performance measures, for the
system after it has been perturbed by variations in selected

parameters. This final step adds confidence to the analysis.
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3. COMPUTING GRADIENTS FOR DIGITAL CONTROL SYSTEMS

The singular-value-gradient equations derived in Section 2 are
for the following terms: ag/BKT, ag/aiT, and ag/aET. We will see
in the following section that these equations are valid for digital
systems if A and B are replaced with ¢ and T, the transition and
discrete control power matrices, respectively. But the elements of
these matrices have no physical significance; they no longer
represent simple linear combinations of aerodynamic and control
power derivatives. In fact, the gradients with respect to ¢ and T,
30/3¢T and 82/3FT, have no real value by themselves, because none of
the terms of ¢ and T can vary independently. What one would really
like to have are the derivatives with respect to the matrices before

discretization. This requires a new set of equations. These

equations are derived in this section, using extensions of the

theory presented in Section 2.

3.1 THE EFFECT OF DISCRETIZATION ON THE SVA

When a single-rate digital control system is designed, the
continuous plant (including all servo, sensor, and analog control
dynamics) must be discretized. The system

x=Ax+3Bu (3.1)
c c
is often discretized using the following equations [16]:
A 2T2 A 3T3

$(A_,T) = T+ AT+ ‘2’! + ‘3’! + ..., and (3.2)

45



r(B_,T) = £T¢(Ac,r)dt *B_, (3.3)

where

T = sample time.
The discrete representation of the system is then

X4+l = X + Tuy . (3.4)
This discretization is performed so that analysis and augmentation
can be performed in one domain, namely the discrete domain.
Feedback gains and digital dynamics (such as digital filters and

compensators) are then augmented to the discretized model to form

the final form of the control system,

¢(A,,T) | L12 r(s,,T)
= + + | —mm———- , (3.5)
s 21 |22 | G21 b
o - < x, (3.6)

(Output, or observer, equations are often used in the analysis and
design of these systems; these equations can be reduced to the form
shown above.) Singular value plots can be found for control systems
of this form, as outlined by Broussard [l13]. However, the direct
application of the technique for finding singular-value gradients
presented by Herrera [1l] and Newsom [8] would find gradients with
respect to the elements of the augmented discrete-system matrices in
Equations (3.5) and (3.6). For parameter sensitivities, we require
gradients with respect to the elements of the A, and B, matrices.
The following section derives these gradients, beginning the

derivation with Newsom's results. No new equations are necessary
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for the C matrix gradients, because the gain matrix, which
represents the discrete controller, exists in the real world, and so
. gradients with respect to the C matrix are valid. For this reason
the notation for the feedback gain matrix has not been changed. It
should also be noted that for all quadrants of the partitioned
matrices in Equation (3.5) except the upper left-hand corner, the
gradients are still valid. They represent the gradients with

respect to parameters in the digital control system, such as digital

filters and compensators.

3.2 DERIVATION OF THE SINGULAR-VALUE GRADIENTS FOR DIGITAL

SYSTEMS

Because the continuous and digital parts of the control system
are inherently different, the technique of switching their roles to
obtain singular values and theirvgradients for the case where
disturbances are measured at the output (location 2 in Figure 2.10)
instead of the input (location 1 in Figure 2.10) is not valid. The
nature of the continuous-to-digital and the digital-to-continuous
interconnections must be accounted for. Therefore, in this section,
we present the derivation of the o-gradients for digital systems in

. two parts. Section 3.2.1 discusses the g-gradients for the

disturbance located at the plant input, and Section 3.2.2 discusses

the sigma-gradients for the disturbance located at the plant output.
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3.2.1 Digital Gradients for the Input Case

For now we will assume that no digital dynamics have been added
to the digitized plant (this restriction will be lifted later). The
system, then, is simply

X4 = 0% + Ty (3.7)

w =-Cx _, (3.8)
and Newsom's results (Equation 2.39) are valid for the gradients
with respect to any parameter (here we use a, to denote an element

of the continuous Ac matrix):

3o

_1i_ . o 9% aq O *
5 - Re tr[(CQ ™ or + CQ %a )viui | (3.9)
c c c
where: Q@ = (Iz - ¢)~! and z = 78T [13].

(Here we have simply replaced A with ¢ and B with T in Equation
(2.39), and made the adjustments necessary when analyzing digital
systems.) The first step is to evaluate 3¢/8ac and ar/aac. The
equations below are approximate, and are taken from Maine and Iliff,

Reference [14]. Appendix A gives derivations for these equations.

9A T
1
29/9a = 3 vcsgi)(¢ + 1), where ¥ = g WA, 0dT; (3.10)
1 aAc
aP/aac =3 WGEE:)YBC. (3.11)

These approximations are exact to order T2 [14] . Substituting
these expressions back into the original equations and using the

identity F=WBC yields

48




aoi BAC oA *

1 —-— -
_ZE = Re'tr{z [Cm'(aTc)(“’ + 1)Qr + ca\y(?;i)r]viui } . (3.12)

- To this expression we apply the following simplified application of
Equations (2.43) and (2.44):
if dp/3a = Restr [Y(3A/3a)z] , (3.13a)

then

T e : PR
op/ A = YZ . (3.i3b)

The matrix expression for the A, matrix gradient, according to this
rule, is

aoi

dA

c

Kee K
=-% [(¢ + Dalv,u Co¥ + Iv u, CaY]. (3.14)

T i i1

At this point we recognize the following formulas from Section 2.3:

aoi *e
'33— = Re[QPviui cQl, (3.15)
and
30
i *-
3T = Re[viui cel (3.16)

(where A and B have been replaced by ¢ and T respectively, and Q is
as defined in Equation (3.9)). These equations allow Equation (3.14)
to be further
‘simplified to

90 90 90

1 1 i
=< [(¢+ I) —+ I —=]V. (3.17)
2" 2 3 art

T

The derivation of aoi/abc where b, is an element of B, and the
control system is digital is much simpler. Starting, again, with
Mukhopadhyay's Equation (2.39) where B is replaced by I and terms

that are zero have been left out:
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i - aT )
3, ca 3b_ 1% (3.18)

we first use the fact that T = WBC to get

90 a(¥B )
i_ = c *
3, ca b 1% (3.19)

and, since @ is not a function of B.,

-Egi = EQW-EEQ v.u *. (3.20)
ab db ii

c c

Finally, using (3.13) and (3.16)
2% *eay (3.21)
= v.u H .

3B T ii

c
30 o0

-y, (3.22)
9B aT

It remains to show that these equations can somehow be applied
to the matrices in Equations (3.5) and (3.6), which have been
augmented in the digital domain. To do this, first assume that the
system has been modeled as shown in Figure 3.1, where none of the
digital-to-continuous or continuous-to-digital connections have been
made, but all dynamics are completely modeled. The discretized

continuous plant dynamics have the form

yk = ka, (3.24)

and the digital control system dynamics have the form

T

ydk = ded + qudk . (3 «26)

50




suaqsAs TBAIITIp JO SquUSTPBI3
anTeA J8INIUIS JOJ SINIONIA}S WI3SAS TOIFUOD STABMOLTY *T°E 2andt4g

| | |
v:vm + wNv: = Pg
| b T+X
r-—-—-=-"=-"="—-"==="="="7 @ﬁcm + @N©< = @N ||||||||||||||||
t
‘ llllllllll . —— — et —— SIS Gvtmme SRR ev——  —— —
i M : ISTTOIFUOD 3
'
(aaTdures)
/

soTusuAp ENVId sotTursukp

1

oISVe SNONUTIUOD

_ snonutquo)

= K _
_ *H N :SOTWBUAP SNONUTRIUOD _

SpPToY
JI3pJO |
oxaz

51




This system can be represented by the completely decoupled set of

matrix equations

= + H
0 A b 4 0 B u
(3.27)
Yk | O X 0o '3
————— = + e ————— . ( 3 . 28)
Y, 0| By xdk 0 | Fq U,

Since this section deals with the disturbance located at the input
to the system, the desired transfer function is between the closed-
loop system input and the input to the plant. To obtain this

transfer function, we make the continuous-to-digital comnnections.

uy = Cyyy

C Hx . (3.29)

This allows u; to be deleted from the augmented vector
[ukT | udkT]T, and y, to be deleted from augmented vector
[ykT | ydkT]T. These vectors have been internalized into the system

by Equation (3.29). Equations (3.27) and (3.28) now have the form

xk ¢ I 0 i xk ) r
—-——=|= + + |y (3.30)
X B,C;H A X 0
dy da~1 ' d i ko
F'xk A
Ya = [FqCpH | By 1f-—-- . (3.31)
X4
k

If we now let w = Czydk, then this system is in exactly the form

presented in Equations (3.5) and (3.6), with the following matrix as C:
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C=-Cyl Fyc;H | Hy 1. (3.32)

If the matrices in Equations (3.30) and (3.32) are taken as the

X, B, and C matrices describing the system, then it is apparent

that
~T F 8¢/8ac l O]
oA
= + , and (3.33)
aac 0 | o
_ [ 3r/9a,
B . . (3.34)
c 0

This allows Equations (3.9) and (3.14) to be written as

a0

—1_ Re. . 22 (a Ta) L
7, Reetr {[(CQ)1 a_ (QB)1 + (CQ) aac]viui}’ and ,

L]
i 1 - - -

T2 Re{[(¢ + D)(98), v,u *(CR), + I\riui*(CQ)l]‘l’} (3.35)
(o4

where the subscripted notation indicates that (CR), and (B ) in
Equation (3.35) have been partitioned appropriately.

Finally, we recognize that the gradients 801/3ZT and aai/aiT can be
written as follows:

801 _ *e (Qﬁ)1 _ _
—= = QBv,u, CQ = [—-————] viul*[(CQ)ll(CQ)z]

AT i1 (sB),

1171

— - 1 - .y
(QB)zviui*(C9)1| (QB)Zviu,i*(CQ)2

(3.36)

[(szi) v,u *(Esz)1 : (sﬁs)lviu.i*('ész)2 ]
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o0 % - - - _
——% =v,u CQ=v ui*[(CQ)1| (CQ)Z] = [viui*(CQ)ll viui*(CQ)z] R

2B ii i

(3.37)
which means that the partitions in Equation (3.35) can be obtained
directly from partitions of aoi/BKT and aci/aﬁT. Combining
Equations (3.35), (3.36) and (3.37) brings us to the conclusion that
Equations (3.17) and (3.22) are valid in the upper left-hand
quadrant of A and the upper quadrant of B in Equation 3.30 if they
are written with the proper partitions of Boi/QKT and aoi/aﬁT.

30
JA
(o]

1 30 = (930
= Re{5 [(¢ + I)(=%),, + B, (==), Jv} (3.38)
= sel} [0+ 0, + 5,050,

Note that the following assumptions have been made:

(a) All feedbacks (connections between the digital and the
continuous system) have been made through zero—-order holds. That is
why the T matrix appears in the upper quadrant of Equations (3.27)
and (3.30).

(b) The gain matrix C is as defined in Equations (3.32) and as shown
in Figure (3.1). This means that continuous feedbacks must be
defined before the continuous system is discretized, and no
feedbacks can be defined from digital blocks to other digital
blocks: they must go from the continuous to the digital system.

(c) The continuous system in Equations (3.23) and (3.24) have no

direct 1link; that is, it has no u terms in the output equation.
This is not a restrictive assumption for most real systems.

3.2.2 Digital Gradients for the Output Case

Gradients for the case where the disturbance matrix L is placed
at the output of the plant are obtained by starting with Equations
(3.27) and (3.28), and making the digital-to-continuous connections
instead of the continuous—-to-digital connections. This is done with

the equation
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Y = Co¥ax
= CZdedk + Cdendk (3-39)
which causes w, and Y4k to drop out of Equations (3.27) and

(3.28), leaving the system equations

= | e # || w;  (3.40)
- xdk_ - o l Ad - L xd‘x(-a Bd -4

W = [H]O].
If the matrices in Equation (3.40) are taken to be A, and B,
while C is found by letting Uy = C1¥:
c=-¢lH]oO], (3.41)
then the system takes the form necessary to do singular values and
their gradients for the case where the perturbation matrix L is
placed at the plant output. For this case the derivatives of’K and

B take on a slightly different form:

_ [ 3¢/3a, | [or/3a.CoHy)

g‘: - 4 , and (3.42)
c o | 0

aa = . (3043)
c 0

Plugging these results into Equation (2.39) and using the proper

partitions of the matrices gives

90 _ | (gﬁ)
3o = Reetr {([(G), 3 1 (Em), ?,Z BCyH,] —mmok
[ c ! (QB)Z

+ (CQ) B C.F

1aa c’2%d 1} (3.44)
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which is easily reduced to

3o
—1_ . . 2 (am tay) Y B
52 = Re + tr {[(c®, 33 (9B), + (CR), 3- B C,H,(5B),
Cc Cc Cc
- Y *
+ (ca), a—achCZFd]viui } (3.45)

Substituting in Equations (3.10) and (3.11) for 8¢/3aC and 3P/Bac,

Boi 1 - 8Ac _ _ BAC _
e Re * tr{; [(cn)lw—a;: (¢ + D)(aB), + (cn)l‘i’-ajc ¥B C,H, (),
_ %A, *
+ (cn)lw-g; ¥B C,F,lv,u, }. (3.46)

Finally, we apply the rule in Equation (3.13) to obtain the matrix

solution.
3o
L. 1 QB) *(Esz) + YB C.H,(QB),v *(Esz)
_ " Re{; [(¢ + D(B) v u, 1 <G Hg (B), vy uy 1
*
+ ¥B_C,F v, u, (cn)l]\r} (3.47)

Now, although the K, E, and C matrices are very different from those
in Equations (3.36) and (3.37), their singular value gradients can
be partitioned in exactly the same way. Doing this allows Equation

(3.47) to be written in the very simple form

90 90 o0
90 1 i - i - i
= ref3 [0+ (=), + &, (=, + B, (), 1¥} . (3.49)
aACT 2 aAT 11 12 aAT 21 1 aBT 1

It is interesting to note that these equations will also apply to
the loop broken at the input case, although they must be applied to

a completely different set of matrices! The second term in Equation
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(3.49) will be zero for the input case, which causes it to reduce to
the partitioned form of Equation (3.17) suggested at the end of
Section 3.2.1.

Unfortunately, the B. matrix gradients do not exhibit similar
behavior; the output case requires a different equation to be
derived. Since T appears in both the A and the B matrix, the

following matrices must be plugged into Equation (2.39):

3B_
i (0 ’ ¥ ab, C2"d
Cc
L.
- 9B
0 ¥ 3,_ CyFq
c L.

When this is done, and the matrices are reduced in a fashion
analagous to that used in the derivation of aoilaac, the following
equation is obtained for aoilch :

30 aoi 90

i [ i
o erd) 4o (d). Y. (3.52)
chT 2°d aBT 1 2°d aAT 21

The assumptions of Section 3.2.1 apply here also, with the
exception that in this case all feedbacks must go from the
continuous to the digital system, instead of from the digital to the

continuous system.
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4. APPLICATION OF THE SVA TO A REPRESENTATIVE EXAMPLE

Sections 2 and 3 provide all the information necessary to do
sensitivity analyses with respect to elements of the matrices
K, i, and C. In this section, the singular value analysis technique
is illustrated using a simple example. This example will point out
the necessity for a slight extension, to allow sensitivities to be

performed with respect to parameters which do not appear explicitly

in K, ﬁ, or C.

4.1 AN INVERTED PENDULUM WITH A DIGITAL CONTROLLER

Consider the inverted pendulum example from Reference [15],

pictured in Figure 4.1.

The pivot of the pendulum is mounted on a carriage which
can move in a horizontal direction. The carriage is driven
by a small motor that at time t exerts a force u(t) on the
carriage. This force is the input variable of the system.
Figure 4.2 indicates the forces and the displacements. The
displacement of the pivot at time t is d(t), while the
angular rotation at time t of the pendulum is 6(t). The mass
of the pendulum is m, the distance from the pivot to the
center of gravity L, and the moment of inertia with respect
to the center of gravity J. The carriage has mass M... F
represents the friction coefficient [of the carriage]

See [15] for details on the derivation of the equations of

motion. If the following variables are introduced:

L' = (J+ nL?)/uL; (4.1)
g1(t) = d(t) + L'6(t); and (4.2)
E(t) = & (t); (4.3)

then the following matrix equations approximate the system:
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pendulum

carriage

Figure 4.1: "An inverted pendulum positioning system" [15]

center of gravity

mg

Figure 4.2: "Inverted pendulum: forces and displacements" [15)
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d 0 1 0 ol d 0
d 0 -F/M 0 0 d 1/M
3 = + u’
£ 0 0 0 1 £ 0
£ -g/L" 0 g/L' o] ¢ 0
L 2 L 2
or i = Ax + Bu

To this system we add a continuous actuator whose dynamics are
given in transfer function form as

BW
5+ B ° (4.5)

and we employ a proportional-plus-integral control law, implemented
using a digital controller, to stabilize the system. See Figure
4.3. A digital lead-lag compensator will be used to enhance the
system's stability and robustness.

This control system was chosen because it contains dynamics in
both the discrete and the continuous domain. Also, the digital
lead-lag provides a point of interest for sensitivity analyses
because its pole- and zero- locations have not been optimized, so
more robustness might be available if they are adjusted. Finally,
this system is sufficiently complicated to illustrate many of the
characteristics that are found in high-order linear models of real
systems.

To study this control system, the A, B, and C matrices must
first be found. This will be done explicitly here, because it is
important to realize how control system parameters get combined into
matrix elements. Computer programs to find A, B, and C given a

block diagram are readily available.
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Since the control system in Figure 4.3 feeds back O and its
integral, this state must be reconstructed from the states in
Equations (4.1)-(4.3).

§ = d + L'6; (4.3)

8 = 1/L'[ -d + §]. (4.6)

Equation (4.6) will be used in the development of the state matrix
equations of the control system.

The first step in developing the state matrix equations is to
add the continuous dynamics to the basic plant dynamics. The
continuous dynamics in Figure 4.3 are the servo and the
integrator. Each of these blocks will add an extra state to the
state vector X.

The servo will be modeled as a first order filter coupled
with a gain. (This method is used to conform to the methods of the
program CONTROL, which is used extensively at Dryden Flight
Research Facility, where these studies were carried out.) The new
state variable will be called ¥, and the new control variable will

be called 7:

4 1 ) U
s + BW BW
q;sl— z , so (4.7)
s + BW ’
Ys + BWY = ¢ . (4.8)
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Taking the inverse Laplace transform of Equation (4.8) yields the

equations necessary to augment § to the control system,

V= -Buy+ ¢ ; (4.9)

u = BWY. (4.10)
The integrator block is added in a similar manner, as follows, using

Equation (4.6):

1l o.
§=26; (4.11)
s = 6 (4.12)
=5 =1 -
§ = 8 =1+ [§ - dl. (4.13)

The continuous dynamics are now completely modeled by the following

equations:

x A (BH(B) [0 | x 0
[ 0 o ol fel 4] e was
st 0 1L o! o lof s 0
X
= av| +Bz.
8

These matrices are next digitized, using Equations (3.2) and
(3.3), so that the states are only known at the sample instants.
Sample instants are spaced T seconds apart. The values of the
states at each sample instant are indicated by the index k, and the
state equations are reduced to the following matrix difference

equations:
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i+l X

wkﬂ. = oA 1) [y |+ TGB,DE, (4.15)
Sl S

where the transition matrix ¢(AC,T) and discrete control-power
matrix I'(B,,T) are defined by Equations (3.2) and (3.3).

The state variables and matrices are now in the 'digital
domain,' so the dynamics of the lead-lag filter and the feedback
gain matrix can now be added to the system. The lead-lag filter
reduces to difference equations using the methods of Reference 16.
First, a new state variable, a, is defined. The input to the block

is 8, and the output of the block is f, as shown in Figure 4.3.

<) 1
z =P s z—pz -
P
a= 1 8 ; (4.16)
zZ -9
p
alz - pp) = 9 ; (4.17)
az = 6 + ppa . (4.18)
Taking the inverse z-transform of (4.18) yields
Uil = Ot PR
S W 1
X dk + X Elk+ ppak. (4.19)
The feedback equation is
;k = Kl(az - pza) , (4.20)
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which, taking the inverse Laplace transform and applying Equation

(4.19), reduces to
Ck = Kl(ak+1 - pzak)

1 1
Kl[- T d tiv €

.t (pp - o ] (4.2D)

k
The second feedback equation is simply (see Figure 4.3)

g = Kzo (4.22)
or, using the inverse z-transform again to get the difference

equation,

Ck = Kz‘sk' (4.23)

Combining Equations (4.15), (4.19), (4.22) and (4.23) yields the

difference equations for the entire system.

des lo dy [ ]
derl | 4 l
4 lo Jj& I
Lest SZS | Iy r’| r
3 - o |l |+
2k+1 ) 2k ck
*k+l IO *k I
Sir1 _______________I‘_’__ S b
% --%T 0 %T ol o o] oo If % o | o
- - L 40 . - -
x, (4.24)
<. i 1
. - o 0 K 0 0 0 Klp o -e)ff %
“lo o o o o ¥ 0 8
%
0 1 o] o Jo K
o £ o o] W | 0 0
6 0 o t| o0 ]o 0
where ¢ = ex
p-%o-{?ololo and T= 1 0
0o 0o o o] -w]|o 1
-5 0 0] o o | o]




This example has been executed in great detail to illustrate
the point that often, even when the system 1s simple, the physical
variables are not directly related to single matrix elements. For
this reason, a slight extension to the singular value sensitivity
analysis 1is required to get results which are useful. To
illustrate, the following sensitivities will be performed:

dg ag 9g o0

35, * 3K * 3L and =g -

To compute these derivatives, one simply needs to compute the

first-order Taylor series expansion using Equation (4.24).

dg og
%" X, e (4.25)
g 1 9% 1 dg 3g
W T TR, TITEe, P T ) A (4.26)
3g 1 9g Yo} a0 g ag 90
LT T .2 [8361 + Ba;, 98, 9, Te ba,, ©da,,
ag 90

+K13§'K13?1';] ; (4.27)
f_g_=__1._89__2_. | (4.28)
OBW M 3a,, " Ja,

The first-order Taylor series expansions in Equations (4.25),
(4.26), and (4.28) are exact. This is because the reduction of the
block diagram in Figure 4.3 into state-space form required only

linear combinations of block parameters and state-space elements.
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No generalization of this result is attempted here, but experience
indicates that if the denominator polynomials in the block diagram
blocks have leading coefficients of one (or if the leading
coefficients are never chosen as sensitivity parameters), then the
vast majority of the elements of the A matrix are simple linear
combinations of block diagram parameters. Thus if one chooses
elements that actually appear as either matrix elements or block
diagram polynomial coefficients, a first-order approximation will
usually be exact. Equation (4.27) is inexact because L' appears as
an inverse everywhere; it is not a state-space element per se. The
approximation in Equation (4.27) will be accurate as long as L' is
not near zero.

The general form for the equ;tions presented above, when
applied to any term in the block diagram describing the system (or

any other parameter) is:

ag da ag ob 9g dc og
R ‘3%1 38, t L a;j 3., T L a;j T (4.29)
ij ij 13

This equation has been implemented in the singular-value analysis

program. The user must supply _

da ab oc
14 1j ij
o > o 0 2

for all appropriate i,j as inputs. For the studies in Section 5,
these derivatives are computed using a modified version the program
CONTROL, which computes the coefficients in Equation (4.29).

Equation (4.29) has been found to be exact for all the parameters
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which will be studied in section 5, because of the linearity (for
many terms) of the transformation to state-space form. The terms

90 90 ag

s , and ——
3aij abij acij

in Equation (4.29) are simply elements of the matrix gradients

90 ag ag
—7 » ——f » and — -
aAT 8BT aC

The equations for these gradients were derived in Sections 2 and 3.

4.2 STEP-BY-STEP APPLICATION OF THE SVA

Equations from subsection 4.1 as well as Sections 2 and 3 must
be combined to do the singular value analysis. Once the gradient
plots are computed, some method for organizing and presenting the
results is necessary, because of the large number of plots
generated. In this subsection, the procedures used by the program
SVA are delineated step—-by-step to bring together all the necessary
components from the previous sections. The inverted pendulum

example will be used to help clarify the details of the analysis.

4.2.1 Setting up the Matrices

A complete robustness analysis of a control system requires
that the singular values and theilr gradients be computed at both the
plant input and the plant output (or, equivalently, at the plant

input and at the controller input). This simply means that the
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analysis must be done for two sets of the matrices A, B, C. In this
section we will present how these matrices are constructed. In
Sections 4.2.2 and 4.2.3, all the steps are the same whether the
system is being analyzed for robustness to uncertainty at the plant
input or at the plant output (controller input). Thus no
distinction is made between the two cases in these sections; any

K, E, and C will do. The only exception is that gradients with
respect to B matrix elements are different for the input and output
cases when the system 1s digital, as discussed in Section 3.2; this
exception will be noted below. Section 3.2 presents a detailed
explanation of how the K, 3, and C matrices must be formed when the
control system is digital. For the continuous case, if the system

is described by the equations

PLANT: xp = Apxp + Bpup (4.30)
Yp = HyXp + Fouy

AUGMENTATION: x, = Ax, + B,u, (4.31)
Yo = Hyxy + Fau,

INTERCONNECTIONS:  w, = Cyy, ‘ (4.32)
u, = Co¥as

and 1f all dimensions are compatible, the necessary matrices for the

input case are

A, | O _ B
A= | P B =]---LP—- ,
BC1H | A, BaC1Fp

4 4 (4.33)
C= (I - CyFCiF)™ [ CoF,CoHy | CoH, 1

and the necessary matrices for the output case are
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-~ 1 (4.34)
C = =(I - CyF,CoF ) [ CyH, | CyFpCoH, 1 -

Note that the minus signs in front of the C matrices arise from the
fact that the analysis assumes negative feedback.
To "scale" the system, one simply needs to introduce a scaled

input vector ug,

u, = Du.

where u is the control input vector for the total system: u, in the

input case and u, in the output case. D, the scaling matrix, should

be square and invertable (it is also desirable for D to be real and
diagonal, to preserve the intuitive idea of changing the “"units”
being used, although References [17] and [20] suggest 'optimum'

scalings which do not preserve this notion). D can be introduced

1u as follows:

into the control system by letting u=D "u

L)
]

Ax + B0 e
D "u = —Ex, or

-D(-:x .

=
]

Thus the analysis can proceed as usual, with the scaled system

represented by Ks = X, B = ﬁD_l

s , and Es = DC. It is easily

verified and intuitively obvious that the closed-loop properties of
the control system are unaltered by this type of system scaling.
However, except in the case of diagonal perturbations, the singular-
value robustness results from a scaled system are valid only for

that system [17]. On the other hand, along the diagonal of the
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perturbation matrix L, since scaling can not effect the allowable

multiplication factors, singular value results obtained from the

scaled system are valid for the unscaled system (see Section 2.3 for

a complete discussion of scaling).

4.2.2 Computations at Each Frequency

To get a plot in which w is the independent variable, the
gradient matrices and partial-derivative expansions must be computed
at each w. This is a repetitive process; the same steps are
followed for each value of w. We present the computation for one
value of w, for a digital system.

A> Let z = 0T = cog(aT) + jesin(wT).
B> Compute Q, where
Q= (1z - &)L, (4.35)
C> Compute the return difference matrix for the control system,
RDM = (CqB + I). (4.36)

D> Perform the singular value decomposition on the return
difference matrix. The resulting matrices are S, a diagonal
matrix of singular values, ordered from largest to smallest;
and U and V, the matrices containing the right and left singular
vectors. The columns u; and vy of U and V respectively
correspond to the o; = 844 in the matrix S by the following
equations from Section 2: :

(I + HG)vi = uioi ’

*

(I + HG) u, = v,o, . (2.32)

E> Extract Ons Up and V,» vhere n = the dimension of the square
matrix A. For the pendulum example, n = 7. Since the oy are
ordered from largest to smallest, o =g

(2.31)
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F> Compute the gradients of the digital-domain matrices using the
equations from Section 2.

- *—
- = Re [2Bv u cay (2.46)
3A "
g *m
- = Re[vnun cel (2.48)
9B
g - *
;—E—T-= Re[QB\rnun 1. (2.50)

G> Extract the necessary quadrants of ag/BKT and ag/aﬁT, and
use them in the equations for 3g/3ACT and ag/chT which were

derived in Section 3 (A, and Bc»for t¥e pendulum example
appear in Equation 4.143. For Bg/BB , the necessary equation
depends on whether the L matrix is at the plant or controller

input.
e refk 6+ D)y + Ay * By M - G
aAcT 2 ot A T e
for L at the plant input,
. (Eg-) yT (3.22)
chT R

and for L at the plant output,

2 [ (EE_) (EE_) ]
= [C,F,(—=), + CH,(— Y . (3.52)
chT 2"a FT T Pl T

The gradients ag/aET are valid without changes.

H> The matrices in Equations (3.49), (3.22), and (3.52) are of the
same dimensions as the quadrants which were extracted in from

Bg/aA: and 30/B" in step G. Insert the results of step G into
the matrices computed in step F. The resulting matrices contain
all the physically significant sensitivities, and are
illustrated for the pendulum example in Figure 4.4.
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X X X X X X
ag 90
X X X X
BW
(- 5 (- 25)
X X ).¢ X X X
39 g 3¢ 30
(=) = X X X X
ok (- &5) 2(&7)
90
X X X X &) X
90 ag
— T X - X X X
(- 7) (3
ag ag
T X % X X X
(- 17) 3(1+)
X X X X
K K
9 1 1
i)T - (-1 3(gv)
=T
ac
X X X X X X

Figure 4.4: Results of the singular value anaysis when applied
to the pendulum example
(X = this element contains a gradient with no physical
significance.)
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I> Construct the desired gradients using Equation (4.29)

a0 da ag ab ag ac Y]
= —131 —+ I a;j — + I ali;j - (4.29)
P P %% 13 13

The results of going through steps A> through I> at each w for

the pendulum example will be presented in Section 4.3.

4.2.3 Data Reduction of the g—Gradient Plots

If we repeat the steps in Section 4.2.1 for a range of w's, we
will end up with g-gradient plots for all the parameters of
interest. The next step is to construct a table of the parameters
in their order of 'importance,' and to display enough information so
that the table can be interpreted. To construct this table, we must
search the frequency range to find the frequency at which each
variable exerts its strongest influence. Again we present a step-—
by-step procedure.

A> For each parameter, perform the following steps:

(1) At each frequency, compute the Ap/p (or percent variation
in p) required to drive o(w) to some minimum allowable g

(o)

(g = oyp)
%R= TM_‘L. (4.37)

('zg'P)

(2) Find the minimum Ap/p for all w.
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B>

The

Steps (1) and (2) are simply the application of Equation (2.51)

g-g
min [2R] » min | 4]

> o (2.51)
© 0 )
0<w< <w<l ?3—p7p_)

Compare the Ap/p's for each parameter to set up the table.

resulting table contains the following information:

-t
N

mama Af Sha wa
id@le€ UIr i pa

.
o

131

2) The frequency at which it exerts its strongest effect
3) o at this frequency

4) 93g/(3p/p) , the 'normalized singular-value gradient,' at the
freqency in column 2. The normalization is performed so that
different parameters can be compared to one another.

5) The Ap/p, in percent, required to drive the og-plot to gMA at
the frequency in column 2, as shown in Figure 2.9.

6) The percent variation in o needed (at the frequency shown in

column 2) to drive it to OvaA® This column helps to identify

when the linearity assumption might be invalid.

The table described above 1s very useful when many parameters

must be compared; however the g-gradient plots still contain vital

information and should not be overlooked, as we will see in the next

section.
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4.3 APPLICATION OF THE SVA TO THE PENDULUM EXAMPLE

The results of conducting the analysis described in section 4.2
are presented in this section for the pendulum example, given the

plant and controller characteristics given below.

plant: controller:
F/M =151 KL =70
/M =1kg™! K2 =13
L' = .842 m p, = .8
g/L' = 11.65 s~ 2 pp = -1
BW = 10 rad/s

Section 4.3.1 discusses the o-plots for this system, and the effects

of scaling on it. Section 4.3.2 gives examples of g-gradients.

4.3.1 o-Plots for the Pendulum Example

Figures 4.5 and 4.6 are the o-plots for the unscaled system.
Figure 4.5 measures robustness to uncertanties at the plant input,
while Figure 4.6 presents robustness at the plant output. The fact
that these plots are very similar is in no way typical; it probably
stems both from the simplicity 6f the control system, and from the
fact that there are only two plant outputs and one plant input. The
low order of the system also accounts for the fact that there is

very little difference between the singular values and the

eigenvalues.
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The robustness of this system would be considered unacceptable
for most applications, even if scaling could be used to drive the
minimum singular value up to the level of the minimum eigenvalue.
Nevertheless, we will use this case to illustrate the technique and
effect of scaling.

At the plant input, the scaling should be chosen so as to

maximize ¢ across the frequency range. To this end, we plot g for D

L

where d takes on various values. This scheme is general enough to

matrices of the form

allow all real, diagonal scalings to be studied. Figure 4.7 shows
the results for d= .25, .5, .714, 1.25 and 2.5. It can be seen that
in this example, very little improvement in Opin 1s available from
this type of scaling. In some cases, however, drastic improvements

can be achieved in this way [17].

At the output, the scaling should be chosen so as to normalize
the output magnitude. For instance, by looking at the time
histories of our baseline pendulum example control system design, we
can choose a scaling D which will cause the scaled outputs, 65 and

85, to vary between zero and one for a 5 degree initial condition on

[s 0 -1
0 1.595 ,

which reflects the maximum magnitudes of 8 and § in a time history.

6. This scaling is
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More complex systems would be more difficult to scale, because
relative output magnitudes depend on the maneuver being performed.
The main purpose in this type of scaling is not to account for all
possible maneuvers, but to normalize out the effects of large
differences in units. 1In this case, as seen in Figure 4.8, the
system actually looks more sensitive when the system is scaled
(compare Figure 4.6). Since this plot indicates sensitivity at the
output, Figure 4.8 might indicate the need for very accurate
measurement devices, with very little noise, for this control
system. The fact that an integrator would probably be used to
implement the measurement of § (see Figure 4.3) would probably solve
this problem, since the scaled system puts more emphasis on § than

does the unscaled system.

4.3.2 o-Gradient Plots for the Pendulum Example

The o-gradient tables (at the input and at the output) for the
unscaled pendulum example are given in Tables 4.1 and 4.2. They
result from applying the steps of Section 4.2. g-gradient plots for
the parameters L', K1, p,, and BW are shown in Figures 4.9 and 4.10,

for the input case.
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Table 4.1: Parameter sensitivities for the pendulum

example at the input node: variations
necessary to drive g .. to .06 (half the
original value)

param. (p) Woiin g(mmiﬁ) aa/ (3p/p) Ap Ag
(¢} 1.33 .12 2.10 =37 -52%
kf 1.62 .12 -.56 11% -49%
Bw 2.15 .12 013 —49% -51%
L' 3.83 .23 .26 -667 =74%

Table 4.2: Parameter sensitivities for the pendulum

example at the output node: variations
necessary to drive g ., to .06 (half the

n
original value)

param.(p)  wpyn 9Cwpyo) 30/ (3p/p) Ap Ag
P, 1.33 .13 2.25 -3Z =-53%
Kl 1.62 .13 --62 llz -52%
BW 2.15 .13 .14 -53% -55%
L' 3.83 «26 $27 =73% -717%
Definitions:
param: Parameter for which gradient has been taken
Wnin * Frequency at which this parameter has maximum effect
oluyy,):  Singular value at wpy,,
39g/(3p/p): Singular-value gradient at wy, .
Wp: Percentage change in p necessary to drive Omin tO .06
Ag: Percentage change in ¢ necessary at Wpin to get to .06
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5. APPLICATION OF THE SVA TO A REAL SYSTEM

This section 1s devoted to applying the results of the previous
sections to the linear model of a real system. Section 5.1 compares
o-plots with frequency response results. Section 5.2 presents some
o-gradient results and compares them to other sensitivity results.
In this section, the issues of scaling and of output singular values
and their gradients are not addressed. Scaling is not necessary in
the cases presented here because the singular values are very close
to the eigenvalues in the Eritical frequency ranges. Output
singular values are not presented here because the intent is not to
do a complete analysis of the control system, but to demonstrate the

feasibility of applying the SVA to real problems.

5.1 o-PLOTS APPLIED TO A REAL SYSTEM

References [1] and [3] discuss the differences between
classical PM and GM and the PM and GM obtained from g-plots. Both
references compared SISO (classical) and MIMO (g-plot) stability
margins for low-order systems. In this section, similar comparisons
will be done for two high-order control systems, which together make
up the linear model of the primary flight control system of the X-29
Advanced Technology Demonstrator.

The two systems we will use are the lateral-directional and the
longitudinal control systems for the X-29. They both represent a

high degree of augmentation; and, in the primary mode, they are both

86




digital. The linear model for the longitudinal aircraft dynamics,
with actuators, sensors, and control laws, is 48th order. The
lateral-directional model is a 35th order system. Appendix B

contains geometric data and dynamic matrices for the X-29.

5.1.1 X-29 Longitudinal Mode

Figure 5.1 shows a simplified block diagram for the X-29
longitudinal mode. The o-plot will be computed for the system with
the control loops "broken" at each of two locations. At ﬁoint A in
Figure 5.1 the system is SISO. At point B it is MIMO. By analyzing
the g-plots of the system at both of these points, and comparing the
results to a classical Bode analysis, some idea can be formed about
the additional conservativeness introduced when a system is analyzed
in a MIMO sense. "Breaking" the loop at a different point primarily
effects how the C matrix, the feedback gain matrix, will be defined.
The Bode analysis can of course only be applied to the SISO system.

It is interesting to note that in this special case (i.e., the
system branches from a single channel into multiple channels), the
eigenvalue-plot (or A-plot) of the MIMO system should match the g~
plot of the SISO system exactly. This is because A-plots measure
relative stability when the disturbances are uniform; i.e., all
loops change in gain and phase simultaneously. This is exactly the
effect that breaking the loop at the SISO point has: the
disturbances at the three separate loops will be equal.

Figure 5.2 is the g-plot for the SISO system, for the X-29 at

15,000 feet and a Mach number of .9. The g-plot of this system is
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Figure 5.2: Singular value plot for the X-29 longitudinal mode

at M=.9 and H=15,000 ft., with the loop broken at
point A in Figure 5.1
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the same as the A-plot, because SISO disturbances are necessarily
uniform. Figure 5.3 is the g-plot/é—plot for the MIMO system at the
same flight condition. Note that the upper plot, the A-plot, 1is
identical to Figure 5.2. The frequency response of the SISO system
is shown in Figure 5.4. The gain and phase margins from Figures 5.2
through 5.4 (computed using Equation 2.17) are tabulated in Table
5.1. It can be seen that the MIMO analysis, which yields the
results in the %nin column, is not much more conservative than the
SISO A-plot analysis in this same column. Both analyses, however,
yield conservative results when compared to classical results. This
is because the %nin must be interpreted as a boundary for gain, for
phase, and for gain-phase combinations. One of these three 1is the
worst case, but the same measure is used for all three, yielding
conservative results. If, however the GM and PM equations are

applied at the crossover frequencies of the Bode plot, fair

agreement is achieved between all methods (see Table 5.1). 1In fact,
the eigenvalue plot is exactly right, except where it is equal to
one. This indicates that although the conversion of Sin to
multiloop gain and phase margins is conservative, the o-plots and A-
plots themselves are giving a true picture of nearness to
instability. For example, the SISO g-plot indicates that the worst
case occurs at 20.4 rad/sec. On the frequency response at that
frequency, a gain variation of 3.3 dB combined with a phase

variation of 16.6 degrees will drive the system unstable. Plugging

these two numbers into Equation (2.16) yields a SV of .396, exactly
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as predicted by the o-plot. Conversely, if one analyzes the SISO g
at the frequency of a gain crossover, the worst case variation will
be a phase margin (since gain is already at its critical value) and
the g-predicted phase margin will match exactly the actual
(frequency response) PM. Gain margin behaves similarly at the phase
crossover frequency. This method, of course, works only if the
system is truely SISO. The point is that at the frequencies of the
classical gain and phase margins, the matches are quite close, as
indicated by Table 5.1. This fact will be true for multiloop
systems also, although the predicted GM's and PM's will not match
classical "one-loop-at-a-time"” results exactly even at crossover

frequencies.

5.1.2 Lateral Mode

Figure 5.5 shows the X-29 lateral mode block diagram. This
system is truely MIMO, therefore classical analysis can yield over-
optimistic results. See References [l1] and [3] for examples of this
phenomena, which was discussed in Section 2.1. In this section we
will again be comparing classical and singular-value derived GM's
and PM's but with the understanding that discrepencies may represent
over-conservatism on the part of the MIMO analysis or over-optimism
on the part of the classical analysis. Figures 5.6 is the o-plot,
and 5.7 and 5.8 are the frequency responses for 15,000 feet at a

Mach number of .9; Table 5.2 tabulates the resulting gain and phase

margins.
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lateral-directional control system (loop

broken at ZOH, rudder loop closed).

igure 5.7
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Classical gain and phase margins were obtained by the method
described in Section 2.1 and pictured in Figure 2.2 (one-loop-at-a-
time). Again, it is apparent that the minimum of the sigma-plot
represents the worst case variation, whether it be a combined change
or a single change in gains or phases. For instance, at about 13-14
rad/sec, both the lateral and the directional Bode plots experience
phase crossovers. But in this range (see Table 5.2), both the ¢o-
plot and the A-plot predict only the worst of the two gain margins,
the directional GM, closely. They are very innacurate at predicting
the lateral GM, because it is much higher and therefore not the
worst case variation. Furthermore, notice that in this case gmin
occurs at 8.9 rad/sec, halfway between the directional GM frequency
and the directional PM frequency. It predicts a GM and PM that are
below all of the classical GM's and PM's, as one would expect.
Again, because it is predicting this worst case, the lateral mode
single-loop GM and PM are not matched accurately at all by the

multiioop margins derived from Snin® Thus clarity of information

in
has been lost because one number is being used to describe the
entire situation. Of course, although singular value information is
less accessible, it is more vital to stability of multiloop systems;
it provides guarantees that cannot be gotten from frequency
responses. An approach to interpreting singular values, based on
this example and on the discussion in the previous section, is to

look at the g-plot across the whole frequency range, and to realize

that the different modes of the system are being represented
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by relative minimums in the curve. By doing this a more realistic
picture of the system's relative stability can be gained.
Interactions between modes such as the one described above will also
show up on the g-plots; this is information which is not available

in the classical analysis.

5.2 SINGULAR-VALUE GRADIENTS APPLIED TO A REAL SYSTEM

Two sets of g-gradients were done for each of the control
systems pictured in Figures 5.2 and 5.5.

The first set of o-gradients was done with respect to the
aerodynamic and control power terms in the matrix model. These
gradients would be useful in determining the robustness of the
system, and in determining the information required from a flight
test or other parameter identification program. They might also
point out what types of design improvements are needed. For
instance, if the control system is very sensitive to changes in CNr
at the dutch roll frequency, a yaw damper loop may be necessary.
Section 5.2.1 discusses a specific example.

The second set of g-gradients was done with respect to the
control system block diagram elements. These gradients also
indicate robustness, but the nominal values of the parameters in
question are usually known to quite high accuracy. The usefulness
of these gradients lies more in their ability to show where control
system improvements might be available. An example is presented in

Section 5.2.2, where the X-29 is used.
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5.2.1 Aerodynamic Gradients

The aerodynamic parameters (both the dimensional force‘
derivatives and the dimensional control power derivatives) appear,
for the most part, as matrix elements in the A and B matrices, and
not as combinations of these elements. As in Equation 4.14, these
parameters are in the upper left-hand quadrant of the augmented A
matrix, after control system, actuator, and sensor dynamics have
been appended to the system. These are the parameters which are of
primary interest to a semnsitivity analysis, because they are known
to the least accuracy. Table 5.3 shows the results of performing
the g-gradient and data reduction analysis described in Section 4.2
on the aerodynamic parameters of the aircraft at a Mach number of .9
and an altitude of 15,000 feet. It is evident from this that very
few of the aerodynamic parameters have a strong effect on the
stability of the system. This indicates a well-designed system.

Table 5.3 indicates that Ma' and Mp.' (Pitching acceleration
due to change in canard deflection) are the most important
derivatives. This result agrees quite well with the results
achieved by NASA-Dryden and Grumman personnel, who used classical
techniques.

The singular value for 15,000 feet at a Mach number of .9,
combined with the M,' and Mpc' sradients, is plotted in Figure
5.9. The importance of frequency interaction is evident in this

plot. Applying Equation (2.51) across the frequency range yields
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Figure 5.9: Plot of 1) singular value, 2) ag_/BM.DE, and 3) ag_/aMO"
for the X-29 longitudinal mode at M=.9 and H=15,000 ft
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Table 5.3: Sensitivity of the X-29 to changes in aerodynamic and
control power derivatives, both longitudinal and
lateral. Parameters are in descending order of
importance (M=.9 and H=15,000 ft)

Parameter variations necessary to drive op;, to .20
(see list of symbols for parameter definitions)

paran.(p) Wain  Hwpin) 397C3p/p) ap Ag
- - -

longitudinal matrices:
B(3.1)~Hoc' 22.5 «36 ~.556 29% =447
A(3.2)-Ma 3.47 .58 -.491 78% -662
B(3,2)-Mpcp'  22.5 .36 .184 -86% 447
3(3'3)_MD$T' 22.5 <36 .081 -196% -44%
A(2,2)—Za 1.98 67 -.234 200% -70%
B(2,2)-ZD$F' 1.37 .72 .107 -4842% =72%
A(3,3)-M 15.5 46 -.034 756% -567%
B(2,l)—ZDC' 1.65 .69 0419 - -71%
B(Z.3)-ZDST' 2.39 .63 -.0199 - -68%
B(l,l)—XDg 211 .77 ~.00191 - =742
A(2,l)-Zu .100 .77 .000965 - =742
8(1,2)—XDSF 211 .77 -.000616 et -74%
A(I,Z)—Xu 211 .77 000535 - =747
A(l,l)—Xu .100 .77 .000514 - =742
A(3,l)—Mu' .100 .77 .000235 -— =742
B(I,3)—XDST » 145 77 -.000090 — -74%
A(l,J)—Xq 1.65 .69 .000008 - ~71%

lateral matrices:
B(3,2)-NDR' 10.5 +59 -309 -1262% -662
B(3,l)-NDDF' 7.33 +62 -.289 1452 -68%
B(Z,l)-LDpF' 1.98 1.30 <643 -1712 -85%
A(2,2)-L 1.98 1.30 448 -2452 -85%
A(3,1)-Ng' 1.65 1.27 -.343 3112 -842%
A(3,2)—Np' 6.08 72 -.144 3592 -72%
A(2,1)-L,' 1.65 1.27 .155 -689% -84%
A(1,2)-Y "' 1.65 1.27 -.149 7192 -842%
A(l,l)—YB' +940 1.01 -.104 7827 -80%
B(Z,Z)—LDR' 1.65 1.27 <125 -857% -842
A(1,2)-Y R' .940 1.01 -.0323 - -80%
A(3,3)—Nr 7.33 «62 -.00962 - -68%
A(2.3)-Lr' 7.33 .62 .00612 -— -68%
B(l,l)—YDDF' 1.98 1.30 -.0156 -— -852

Definitions:

param: Parameter for which gradifent has been taken

Qpgn Frequency at which this parameter has maximum effect

g(”min)’ Singular value at g, .
39/3p/p): Singular-value gradient at wy .
Ap: Percentage change in p necessary to drive g ;. to +20

Ag: Percentage change in g necessary at w,,. to get to +20

NOTE: The derivatives zq' and Yt' have been omitted from the

analysis. They give migleading results because Zq'zl~zq/Ul

and Yr'-l~Yt/Ul. so that very large changes in Z_  and Y  are

q
necessary to cause any significant effect on zq' and Yr',

respectively.
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the plots of the variation in Ma' and M.' required to drive ¢ to
.2; these plots are shown in Figures 5.10 and 5.11 respectively.
These plots show that the two most critical frequencies>are ~4=-5
rad/sec and 21 rad/sec. The interesting thing about Figure 5.11 is
that it bounds the allowable variation in MDC' in both the negative
and the positive direction, giving the necessary accuracy of that
parameter for the system to remain robust.

It is also interesting to note that if Ma' and MDC' vary
together in the same direction (which they are likely to do in the
X-29, because the canard effectiveness is the primary contribution
to both Ma' and Mp.'), the effects of their variations tend to
cancel one another out. This result agrees with other sensitivity
analyses, although in these analyses the cancellation is not as
graphically evident as it is in Figure 5.9. The frequency nature of
this cancellation is also evident; at the higher frequencies it does
not occur; the MaY gradient is large (negatively), while the MDC'
gradient is very small (positively).

Figure 5.9 and the above discussion suggest another way in
which aerodynamic sensitivity information can be presented. Using
aerodynamic concepts, one could set up equations which described how
various combinations of parameters will probably change. For
instance, if the lift-curve slope of the horizontal tail is
predicted to be different than it actually is, the parameters which
will be effected are

2, 72,2, Ma’ M&, and Mq

a s ] q
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O-plot minimum to .2 for the X-29 longitudinal mode

at M

.9 H=15,000 ft

106




M-0C PERCENTS.,

SIGMA-MA=, 2, X29 M=, 8 H=1SK

200 //r’

1S5S0

[
o]
o

i ri! i

L et
-

e —
e o

0
o

|
0
(o]

NORMALIZED SINGULAR VRALUE GRADIENT
-
3 o

-150

1071

Figure 5.11:

Plot of percent variation in MDé required to drive
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These parameters will all vary when the 1lift curve slope of the

3
horizontal tail changes. Thus a weighted sum of these parameters
represents a parameter of the system which might change, and a

singular-value gradient plot with respect to this weighted sum

represents a very useful measure of the sensitivity of the system.

5.2.2 Control System Parameter Gradients

The control system parameters of interest to the designer are
usually the constants that appear in the blocks of Figures 5.1 and
5.5, such as the compensator and filter break frequencies and
damping ratios, and the feedback gains of the system. Using the
partial-derivative expansion method described in Section 4.1, it is
possible to get the gradients with respect to these parameters, even
though they usually do not appear as single elements of the K, ﬁ, or
C matrices. Table 5.4 gives the results of a sensitivity analysis
on all the parameters in the longitudinal system. Table 5.5 gives
similar results, for the parameters in the lateral control system.
These results have been verified by perturbing some of the control
system parameters, one by one, computing the resulting o-plot, and
computing the derivatives numerically. Tables 5.4 and 5.5 are in-
cluded to demonstrate the volume of information that can be sorted
through by the analysis. Out of the 39 parameters in the lateral-
directional and longitudinal control system that we analyzed, we
were able to isolate the few that effect the stability of the

control system most dramatically, and to order these from most to
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Table 5.4: Sensitivity of the X-29 to changes in longitudinal
control system parameters., Parameters are in descending
order of importance (M=.,9 and H=15,000 ft)

Parameter variations necessary to drive gpi, to .20
param.(p) Wrin o(upi)  30/Cap/p) Ap Ag

Pl . 0100 -77 58.3 -lz . -7470
C3 1806 .38 -1058 ].ZZ _482
P2 6.08 .58 3.27 -12% -667
K3 18.6 .38 -1.20 15% -48%
c2 18.6 »38 -1.05 17% -487%
K2 18.6 .38 -.939 20% -48%
GXAl 22.5 .36 473 =347 ~447
N1 22.5 .36 -.461 367% =447
G2 18.6 .38 477 -39% -487%
N2*N3 15.5 46 -.674 39% -57%
GXG2 22.5 «36 -.324 497 =447
c5 22.5 .36 .178 -90% =447
B2 22.5 »36 .148 -107% =447
Cl 18.6 038 -0151 122% "'4870
PST +537 77 -.460 125% -747%
GS1 22.5 «36 «125 -128% =447
GFl 22.5 .36 .105 -152% =447
Bl 18.6 .38 -.0895 2057% -48%
c4 22.5 .36 .0160 -992% =447
Gl 6 a08 058 00343 - -66%
Kl 4.18 «57 -.0274 - -65%
KST 647 77 .0228 - ~-747%
K4 22.5 .36 .000 ~-447

Definitions:

param: Parameter for which gradient has been taken

Wrin ° Frequency at which this parameter has maximum effect

oCuwps ) Singular value at g; ;.

30/(3p/p): Singular-value gradient at w ,

Ap: Percentage change in p necessary to drive ¢ min t° «20

Ag: Percentage change in g necessary at Wnin tO get to .20
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Table 5.5: Sensitivity of the X-29 to changes in lateral control

system parameters.

importance (M=.9, H=15,000 ft)

Parameters are in decending order

of

Parameter variations necessary to drive g 4., to .20
param. (p) Woin aCuys,) 30/(op/p) Ap Ag

N2 .780 .99 13.2 ~67% -80%
P2 1.13 1.07 -13.3 7% -81%
Pl 2.39 1.16 12.9 -7% -83%
N1 5.04 .78 -2.06 28% ~747%
K6 10.6 .59 -.386 1017% -667%
K17 10.6 .59 -.373 104% -667%
XKP4 10.6 .59 -.373 104% -66%Z
K2 2.39 1.16 -.553 1747 -83%
XXP3 2.39 1.16 «553 -174% -83%
K7 7.33 .62 -.133 314% -68%
K5 1.9 1.30 .0638 - -85%
K3 8.83 «56 -.0178 - -647%
K4 8.83 +56 .000 - -647
K16 8.83 056 0000 - -64%
K18 8.83 .56 .000 - -647%

Definitions:

param: Parameter for which gradient has been taken

Wrin® Frequency at which this parameter has maximum effect

olupy,):  Singular value at wp ;.

3g/(3p/p): Singular-value gradient at Ynin

Ap: Percentage change in p necessary to drive Omin CO .20

Ag: Percentage change in g necessary at Wpip tO get to .20
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least important. Of course, the plots and tabular data must be
studied carefully to determine which parameters effect the system at
the most important frequencies, what trade-offs result if a
parameter changes, and the extent to which the linearity assumption
is valid. But all the necessary data to make intelligent
sensitivity judgements is now available. One example of the effect
of a g-gradient on a g-plot will presented to demonstrate that the
gradients are in fact correct. Figure 5.12 shows the g-plot for the
longitudinal control system at M=.9, H=15,000 feet, before and after
a 50% variation in the feedback gain GXG2 (see Figure 5.1). The
GXG2 gradient is also included on this plot, so that it is
immediately clear that the prediction of the gradient is at least
qualitatively correct. GXG2 is chosen because, although it is not
the 'most important' parameter as measured by Table 5.4, its effect
occurs at the most critical frequency of the system. Furthermore
the trade-off which a variation in GXG2 imposes is quite acceptable;
the minimum singular value can be increased by about .15, with a
similar decrease occurring in the singular value at a higher

frequency, where there is plenty of margin.
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Effect of 1) 3g/3GXG2 on 2) g for the X-29 at

M=.9 and H=15,000 ft. 3) is the plot which results
when GXG2 is perturbed in the negative direction
by 50%.

112




6. CONCLUSIONS AND RECOMMENDATIONS

In this paper it has been demonstrated that singular values and
their gradients can be applied to systems which are of the
complexity and size of problems in the real world. The extensions
needed to analyze high-order digital systems do not make the
analysis intractable. An important conclusion that resulted from
this project was that the control system must be properly scaled if
the singular values are to be useful as measures of sensitivity.

The scaling techniques discussed in Section 2 are a vital first step
in insuring that the analysis will give an accurate indication of
the sensitivity of the control system to parameter changes.

Another important conclusion is that tabular results, although
useful, are not usually adequate for this type of sensitivity
analysis. Any method for tabulating the information in the o-plots
and o-gradient plots must necessarily oversimplify both frequency
interactions and the effects of nonlinearities. So, as with any new
tool, a control system designer must work with the actual plots for
a while, to get a feel for what they mean and what they do not
mean. Given a proper understanding of the mathematical basis for
singular values, the designer can get a lot of otherwise unavailable
information from thése plots.

Further research into the SVA might study a) the
conservativeness of singular values as a robustness measure, b) the

nonlinearity of the variation of the g-plot with parameter changes,
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or c) the sensitivity of plots of singular values which are not the
minimum.

The conservativeness of singular values 1s a current area of
research. Many inroads have been made into reducing the
unstructured and therefore conservative nature of singular values.
Many of the less conservative robustness measures being studied are
based on scaled singular values, which would lend themselves to the
gradient technique. The methods for scaling the system to change
the singular value plot presented in Section 2 yield an acceptable
sensitivity measure; but non-real, non-diagonal scalings may yield
better results. In any case, the effect of scaling the system on
the gradient equations is of interest for future studies. The use
of other robustness measures, such as structured singular values
{21], in a sensitivity analysis 1is also a possible area for further
reasearch.

The nonlinearity of singular values with respect to changes in
parameters 1s a characteristic which, if properly understood, does
not pose any real difficulty to the technique. The singular-value
sensitivity analysis is a first—order analysis which is meant to
pinpoint parameters which need further study. It is not meant to
yield exact results; so nonlinearities, as long as they are not too
great, do not invalidate the results. (See [23] for a discussion of
the range of linearity of singular-value plots.) More work does
need to be done, however, to quantify the level of nonlinearity that
can be expected from singular-value plots when control system

parameters change.
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Finally, some way to account for the singular values which are
not the minimum, and their gradients, must be implemented. This is
necessary because g-plots might “cross-over"” one‘another if their
gradients are large enough. This is primarily a bookkeeping problem
because it can be handled by simply performing the SVA on the
second-smallest o -plot instead of the smallest, and then on the
third-smallest and so on. The parameter sensitivities can then be
compared to get a full picture of the system's sensitivity. The
implementation of this technique, and the organization of the
increased amount of data that result, are the challenges which
future studies might tackle. Alternate methods for accounting for

larger singular values might also be studied.
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APPENDIX A:

DERIVATIONS CONCERNING SINGULAR VALUES

Derivations considered too involved for the text are contained
in this Appendix. Section A.1 contains proofs referenced in Section
2, Section A.2 contains proofs referenced in Section 3, and Section

A.3 contains proofs from Section 4.

A.1 PROOFS FOR SECTION 2

The first derivation is of the basic theorem of singular value
decomposition, which states that any matrix can be expressed as a
real diagonal matrix combined with two unitary matrices. This
derivation was referenced in Section 2.2. This proof 1is adapted
from Reference [11].

Let A be any complex-valued m x n matrix of rank r. Then there

exist complex unitary matrices U (m x m) and V (n x n) such that

A = USV*, (A.1)
where
z 0
S =
0 0

and I=diag(oy,09,.-.0,) with

o, ? G

1 2>...>or>0

[For our speclal case, A, V, and U are all n x n; and, since A is of
full rank, r=n and S=I]




Proof:

Since A*A > 0 (nonnegative definite), the eigenvalue spectrum of
A*A, p(A*A) ¢ [0,+=). Denoting p(A*A) by 0,2, 1=1,...n we can

arrange that o 2 02>...or >0 = Ortl = Op42 = *+°0,° Let v,

Vo,«+eV, be a corresponding set of orthonormal eigenvectors and let

Vi = (v1,99,5004,V,) (A.2)

Vo = (Wp41s vr+2,...,vh). (A.3)
Then if I = diag(ol, 02,...or), we have

A*av) = v 52 (A.4)
whence

rly, *a*av st = 1. (A.5)

Also A*AV,=V,+0 so that

vy "a"av, = o (A.6)
(AV))*AV, = 0, and thus (A.7)
AV, = O. (A.8)

Let U1=AV12—1. Then from (A.5) we have UI*U1 = T; thus Uy is

unitary. Choose any U, such that U = (U;, U) is orthogonal. Then
* *

[v,"av, Uy ™av,

u*av

. . (A.9)
Uy AVy Uy AV,

b

[z 0

*
U,"(uyz) 0

and so A = USV* as desired.

A.2




The next two proofs were also used in Section 2.2. The first
is that the maximum and minimum singular values correspond to the
Euclidean norms, which are the maximum and minimum change in length
a matrix can produce as a transformation. The second is that

E(A'l) = E%KT . (A.10)

Both of these facts are proven in Reference [10] as follows:

Consider a matrix A as representing a linear transformation of one
n—-dimensional space X into a second such space Y. Thus y = Ax is in
Y and x in X. In representing the linear transformation by the
matrix A we have assumed given orthogonal coordinate systems in both
X and Y. Now consider an orthogonal change of coordinates in space
X, so that the vector represented above by x obtains the new
representation x' where x = Vx'. In the same way, by a different
orthogonal coordinate change in Y, we obtain a new representation
for y, namely y', where y = Uy'. Here both U and V are the matrices
of [Equation A.1]. As a result of these changes of bases in X and Y
the transformation originally represented by A obtains a new
representation, which we will show to be S. We have

y' = Uy = va(vx') = (U*AV)x' = sx'. (A.11)
Thus y' = Sx'...

In the new orthogonal coordinate systems the transformation has
a very simple representation. In terms of components we have

y'p o= opx’y

1

Y'p = opx'y

y'e = arx'r (A.12)
V'l =
r
y'n = O.

A.3



The transformation now merely maps the first coordinate axis of X
onto the first coordinate axis of Y, with a magnification factor ¢
> 0. It does the same for the 2nd, 3rd,...,r—th coordinate axes o%
X, with the respective magnification factors gp,...0.. The
(r+1)-th,...,nth coordinate axes of X are mapped onto the zero
vector of Y.

From A.12 we can show that S maps the unit sphere
P = {x':lIx'lll =1} into an r-dimensional hyperellipsoid E = SP of
vectors y' such that

+ oo = 1 and yr+1 = e 0 = yn = o. (A.13)
1 or

One of the points of E furthest from the origin © is the point

(01,0,0...0). If r < n, then E contains the origin 6. If r = n,

then E does not contain the origin and one of the points of E
closest to @ 1is (0""’0’°n)‘ If r<n, then S and hence A are

singular matrices. If r=n, S and A are nonsingular and have
inverses; then directly from A.12 we see that

s-1 - . . (A.14)

Thus the singular values of Al are 01_1,...,on-1.

From the discussion above and from the definition of Al as
A |

x#0 IxI

we see that

1AI = ISI = o, (A.15)

(in other words, the singular values correspond to the matrix
Euclidean norms, as was to be proved).

If r=n, then

1II 1 -1

=157 =0 (A.16)

1A~

(in other words, E(A-l) = l/g(A), as was also to be proved).
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The last proof from Section 2.2 is taken from Reference ([3].
This theorem allows the following stability criterion for the
perturbed system return difference matrix: L must be smaller than
the smallest matrix J for which
og[I + HGJ(Jw)] = O, (A.17)
to be written as a criterion for the L matrix alone. To do this, we

first rewrite [I + HGL] in a form that will allow G to be separated

from L:

I + HGL

! + o)L (A.18)

[(L1-1) + (1+HG) )L

[(L7-1)(1+8G) "L + I)(I+HG)L.
Since (I+HG) and L are both nonsingular, (I+HGL) will be nonsingular
1f [(L71-1)(1+8G)! + I] is nonsingular. This will be insured if
[3]

st -y (r+uey 1) < o1y = 1. (A.19)
but, according to [16],

srul-1y(1+a6) 71y < o(Ll-1)o[1+HG™L]. (A.20)
So a sufficient condition for stability is

oL l-1y51(1486) ™) < 1, or (A.21)

SLl-1) < g lp(r+ue)y7ly, (A.22)

which translates, using Equation (A.10), to

o(L~1-1] < o[I+HG], Q.E.D. (A.23)




A.2 PROOFS FOR SECTION 3

In Section 3.2, approximations for the derivatives of ¢ and V¥
are presented. The approximation for 3‘1’/3ac is proven by applying
it and comparing the results to the exact solution. The |
approximation for a¢/3ac follows when the av/aac equation is
assumed.

The approximation for BW/aac is

1 aAc
=5 53: ¥ . (A.24)

¥
8ac approx

If the Taylor series expansion for ¥ is substituted into this

formula, the result is

3y 1 AcT2 BAC ACT2
- =7(T+ 3 +...)a—a—-(T +-7—+...)
c|approx c
1 aAc ACT2 aAc aAc ACT2 ACT2 aAc ACT2
2 (T %a T+ 2 2a T+T 3 2 T2 %a 2 +o.ee)
[ Cc (o] Cc
dA A 3 A 3 oA 4
= (L _¢c 42 eI, _c r —< I
9 5a ¢ YA g 2 et YA T Ac gt
Cc C C Cc
(A.25)

the exact formula for Bwlaac comes from taking the partial

derivative of the Taylor series expansion, as follows:

2 3
Yy¥=1T+ AC _2+ Ac—3—!-+ e e (A026)
Y 5A .3 9A 3
oY _ T c T c T
Ta " %a ztAc s 3Tt ATt o (A-27)
C C [od (o4
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Subtracting Equation (A.27) from (A.25) yilelds the error involved in

the approximation.

A 3 A 4
oY Y c T c T c T
- * 5 Ac izt da Azt -

0

a da
c|approx c

(A.28)
so that the approximation 1is good up to the T2 term of ¥, with an
error of order To.
To prove the approximation for 3¢/aac, we start with the
following relation, which is obviously true if one studies Equations

(3.9) and (3.10):

$=YA_+I; (A-29)
oA
. 99 R c
- a3 AT ¥m
c c
1 aAc aAc
=g ¥ag YA+t Y 5
c c
1 aAc
= E-W 35 (WAC + 2I)
c
1 3Ac

A.3 PROOFS FOR SECTION 4

In Section 4.2.1, the computation of (Is---A)_1 is mentioned as
part of the algorithm to find the singular values. Computing
(Is-A)'1 for s=jw at each frequency point takes by far the largest

percentage of the total computation time. Thus it is necessary to



make this process as efficient as possible. After studying various
alternatives, an algorithm presented by A. J. Laub [22] was used in
the Dryden implementation of SVA. This algorithm is presented here,
and extended to include digital systems.

The first step is to determine the similarity transformation
that puts A in upper Hessenberg form. A Fortran subroutine which
finds the necessary transformation is available in the ORACLS
package, and yields T such that

A = THTL, (A.31)
where H is an upper Hessenberg matrix, which means that the upper
triangle and one subdiagonal of H are nonzero. The decomposition of
A into H and T need only be done once, so adds very little
computation time to the total process. (Is--A)_1 can be written in
terms of A and T as follows:

(1s-a)"1 = [1s - (muT~ 1)1 (A.32)

L]

(r(r”ls - ur~ly;~!

[T(Is - B)T"!]71

[(Is-H)T"1y1~1r71

T(Is-H) 1171,
where the following fact has been used:

(aB)"l = p~1a-1l, (A.33)
pre- and post- multiplying both sides of Equation A.33 by AB proves
it to be true. To find (Is—A)—1 at s=jw we first solve

(Iju-H)z = 771 (A.34)
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Then

(Tjw-A)"1 = T12. (A.35)
Suppose Z=X+jY where X,Y ¢ gXn (n is the dimension of A). Upon
equating real and imaginary parts in Equation (A.34), we get the

following 2e+nth-order real system to determine X and Y:

][]
————— = (A.36)
wl | -H Y 0

Thus, X=(1/w)HY and Y=-w(o?I + H2)"IT7!. The matrix (w?I + H%) will
be invertible 1f (jwI-H) is invertible [22]. Note that (w’I + HZ)
is no longer upper Hessenberg, but is almost Hessenberg in the sense
of having two, rather than one, nonzero subdiagonals. Its shape is

wholly typified for n=5 by the matrix

S OM MK R
O M M M N
EO I
L
E - ]

linear systems involving matrices of this type can be solved using

approximately n2

multiplications. We summarize the Hessenberg
method using real arithmetic.

1) Reduce A Eo upper Hessenberg form H, find T and T-l, and
compute H“; this step is only done once.

2) Solve (mZI+HZ)Y=—mT-1 for Y.
3) Compute X=(1/w)HY (wfO; (Is-A)-1=-TH_1T for w=0).
4) Compute (Ijw - A)-1=(TX) + J(TY)
If the system is digital, we desire to compute (Iz—A)'l, where
z = eJWT = cog(uT) + jesin(uT). (A.37)

For this case, Equation (A.36) can be written

A.9




[—H—I~cos(wT)

Iesin(wTl)

— it ———

~Tesin(uwT) }[X 771
= . (A.38)
~H-I+cos(wT) Y 0
If » is taken to be sin(wT) and H is taken to be H-Iecos(wT), then

Equation (A.38) can be written

5 [

and the derivation proceeds as above.
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APPENDIX B:

DESCRIPTION OF THE X-29A ADVANCED TECHNOLOGY DEMONSTRATOR

The X-29A 1s currently being flight tested at NASA Ames-Dryden
Flight Research Facility. This unique configuration is 35%
unstable, so the verification of the flight control system is of
primary importance to the success of the program. Thus very
accurate information about both the aerodynamic characteristics and
the control system characteristics is available. This information
was used to construct the example runs presented in Section 5. This
appendix presents the numbers necessary to describe the dynamics and
feedback laws of the X-29 at a Mach number of .9 and an altitude of
15,000 ft.

Figure B.l1 is a three-view of the X-29A. Table B.l gives the
dynamic matrices for the X-29 longitudinal linear model, for M=.9
and H=15,000 ft. The four states are velocity, angle of attack,
pitch rate, and pitch attitude angle, in that order:

xX = [u a q O ] (B.1)
The longitudinal control variables are canard, symmetric trailing
edge flaps, and strake flap:

ul = [ C SF §T] (B.2)
The feedback laws of the primary (or "normal digital mode")

longitudinal control system at this flight condition are modeled by




(TeuOTYBULSIUI FUBTT HGET dunp) I03BIFSUOUS] £3oTouyoa], poouBAPY V62-X :T°d 2an3T4

V6Z -X NVWIANUD
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Table B.l Longitudinal dynamic and control-power matrices for the
X-29 at M= .9 and H=15,000 ft

A matrix:

u(fps) a(rad) q(rad/s) 8(rad)
u -.4368E-01 -.9045E+01 —.4514E+00 —.3213E+02
a -.1485E-03 ~.1791E+01 .9910E+00 .2522E-06
q -.6588E~-03 .3578E+02 -.6981E+00 .0000E+00
8 .0000E+00 .0000E+00 .1000E+01 .0000E+00

B matrix:

DC(deg) DSF(deg) DDF(deg)
u ~.1444E+00 .5415E-01 —-.2530E-01
a -.2043E-02 -.5604E-02 —-.8410E-03
q .3376E+00 ~.1909E+00 —-.6556E-01

De

.0000E+00 .O000E+00 .0O0OQE+00
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the diagram in Figure 5.1. The values for the control system
parameters in this figure are given in Table B.2.

Table B.3 gives the dynamic matrices for the X-29 lateral
linear model, for M=.9 and H=15,000 ft. The four states are
sideslip angle, roll rate, yaw rate and bank angle:

xT = [B p r 0] (B.3)
The lateral control variables are rudder and differential trailing
edge flaps:

ul = [ R DF ] (B.4)
The feedback laws of the normal digital mode lateral control system
at this flight condition are modeled by the diagram in Figure 5.5.
The values for the control system parameters in this figure are

given in Table B.4.
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Table B.2 Gains and transfer function coefficients for the
X-29 longitudinal control system - Figure 5.1
(M=.9 and H=15,000 ft)

Kl = 0.001 PL = 1 ClL = 0.429
K2 = -0.1671 P2 = 1 c2 = -2.839
K3 = -0.1421 C3 = 3.843
K4 = 0.0 C4 = -0.04
KST = 0.006183 PST = 0.9756 C5 = -0.4
Gl = 1.428

G2 = -3.365 Nl = 1

Gsl = -0.70 Bl = 0.2308

GFl1 = -0.30 N2 = 1

GXG2= -5.568 N3 = 1

GXAl= -3.428 B2 = 0.2308




Table B.3 Lateral-directional dynamic and control-power matrices

for the X-29 at M=.9 and H=15,000 ft

A matrix:

He "Te T

-

B matrix:

He "We TDe

oo

B(rad) p(rad/s)

r(rad/s)

-.2872E+00 .5241E-01 -.9986E+00

-.4608E+02 -.4948E+01

+1651E+01

.1104E+02 -.1828E+00 -.8023E-01

.0000E+00 .1000E+01

DDF (deg) DR(deg)
-.1465E-02 .1017E-02
.1949E+01 .4671E+00
.1257E+00 -.1203E+00

. 0000E+00 .0000E+00

B.6

«5248E~01

¢(rad)
«3371E-01
.0000E+00
.0000E+00

.0000E+00



Table B.4 Gains and transfer function coefficients for the
X-29 lateral-directional control system - Figure 5.5
(M=.9, H=15,000 ft)

K2 = -1 XKP3 = 0.018
K3 = 3 XKpP4 = 1

K¢ = O Nl = 1.428
K5 = +-0.03384 PL =1

K6 = 0.9938 N2 =1

K7 = =0.05243 P2 = 0.9876
Kl6 = 0

K17 = 0.5¢9

K18 = O
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APPENDIX C:

USER'S GUIDE TO SVA

SVA stands for singular-value analysis. SVA is a program to
compute the singular-value plot (g-plot) of the return difference
matrix of a control system. The node at which the return difference
matrix is computed (input or output) is controlled by the user's
input matrices (see Sections 3.2 and 4.2.1). SVA also computes the
"gradients”, or partial derivatives, of the o-plot with respect to
plant or controller parameters.

This appendix describes how to run SVA. It is broken up into
five parts, four of which describe four ways in which SVA can be
used:

C.1 Basic Definitions

C.2 Input Using a CONTROL Input File;

C.3 Input Using an Interactive Program Called PRESVA;

C.4 Input Directly From a Data File; and

C.5 Calling the Main Subroutine in SVA, Called SVANAL,
Directly.

The way to read this guide is to study the definitions in Section
C.1, and then skip to the section which corresponds to the way you
wish to run the program. Each section contains the following

information:

1) Discussion of the technique, including restrictions;
2) Definitions;

3) Input formats; and
4) Information necessary to run SVA on the ELXSI system.




C.1 BASIC DEFINITIONS

The definitions in this section apply to all the sections which

follow.

C.1.1 Control System Description

The control system which is analyzed by SVA is of the form

x = Ax + Bu (C.1)

u = Cx (C.2)
for continuous systems, and

Xy = Ax, + By (C.3)

w = -Cx (C.4)
for digital systems. Notice that SVA assumes negative feedback; you
give it the C matrix to fit the above equations. Dimensions are

NSM x 1 H
NC x1 H
NSM x NSM ;
: NSM x NC
NC x NSM .

QI 2 M

For digital systems, A and B are of the following form:

_ [ecac,t) | 112

A= } (C.5)
L L21 | L22

- [ T'(BC,T)

B = | ——————- ,
| 621

where
2,2 3.3
6(AC,T) = 1 + ACeT + A2|T + Ag'T +oeen

C.2




T
and T'(BC,T) = | ¢(AC, t)dTeBC.
(o]

AC and BC describe the continuous subsystem of the overall
control system, as illustrated in Figure 3.1.

T is the sample rate of the controller.
L12, L21, L22, and G2l are terms added in the z-plane, after
discretization of the continuous dynamics, to account for the

dynamics of the digital controller.

Dimensions for a digital control system are

b SiH NSM x 1 H
u NC x 1 H
A NSM x NSM ;
B : NSM x NC
C : NC x NSM ;
AC : NSU x NSU ;
BC : NSU x NCU .

C.1.2 Gradients

If you will not be computing gradients, you can skip this
section. In later sections, if you do not want gradients, simply
enter zero at the appropriate locations and no gradients will be
computed.

A g-gradient with respect to some parameter p has the form

g
35 (@ - (C.6)

It is a function of frequency, and describes the effect that the

parameter p has on the o-plot. Since the g-plot is a measure of the
relative stability of the system, a g-gradient shows the effect that
varying p will have on the relative stability of the system. The o-

plot will be effected by the parameter p in the following way:
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90

4@ = (w) + 5%—(w) . Ap. (C.7)

gperturbe gbaseline
This equation illustrates an assumption made by SVA. SVA assumes
that a first order Taylor series expansion approximates the behavior
of the g-plot as p varies. This assumption will hold only within a
certain range of Ap's.

To take out the effect of the relative size of various "p's",

percent variations combined with normalized o-gradients are used by

SVA. A percent variation is computed as
Top(-100), (c.8)

and a normalized gradient as

ag ag
W = a—p' e lple (C.9)

Thus Equation (C.7) becomes

a0
= - . Ap_
gperturbed(m) - gnominal(w) + Gp/p) (w) TIE (C.10)

In this guide it is very important to distinguish between
o-gradients and normalized g-gradients.

SVA allows normalized g-gradients to be obtained for any
parameter p which is

1) An element of the matrices A, B, or C if the system is
continuous.

2) An element of the matrices

AC | L12
AD = |-—m———m——me . (C.11)
L21 | L22

BC
BD = |-—1,
G21
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and c if the system is digital. Compare AD and BD to

A and B in Equation (C.5); The AD and BD matrices are used
instead of A and B because gradients with respect to ¢ and
I' are not of interest; see Section 3.

3) Any linear combination of elements of K, B, and C if
the system is continuous.

4) Any linear combination of the elements of AD, BD, and
C 1f the system is digital.

To avoid confusion, all gradients with respect to matrix elements
(types 1 and 2) will be referred to as element-gradients. All
gradients with respect to parameters which are linear combinations
of matrix elements will be called partial-sum gradients. Partial-
sum gradients are much harder to describe to SVA, so they should be
avoided at first if possible. They are, however, quite necessary
for some applications.

To get partial-sum gradient information, SVA calculates the

following:

R , and
Baij 551j 'c)cij

as functions of frequency, where aij’ bij’ and cyj are any elements
of the K, E, or C matrices, respectively. SVA then computes the
normalized og-gradient using partial derivative expansion equations

of the following form:

g da g ab o0 ac og
5L a;j — + I a;j ot I —Q;j . (C.12)
1j ij ij
The information which must be supplied to SVA for each p is
aai! abij and 3cij
ap * 3p °? ap




for all i,j for which these derivatives are non-zero.

The way the partial-derivative expansion information is
formatted in the SVA input file is only important if you plan to do
direct data-file input; this is discussed in Section C.3. The kind
of information which must be transferred to SVA is:

1) the number of terms in the partial-derivative
expansion;

2) the original value of p;

3) the locations in A, B, and C of the elements ay §»
bij’ and Cij which make up the partial-derivative
expansion; and

4) aaijlap, abij/ap, and acij/ap for each term in the

expansion.
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C.2 Using a CONTROL Input File to Run SVA

C.2.1 Discussion

The program CONSVA is simply a modified CONTROL. It runs in
exactly the same way as CONTROL, except for a few modifications to
Ehe input file and the output filenames. These will be explained
below.

CONSVA has been set up to run as a filter. It takes a
CONTROL input file from $Stdin and outputs an SVA input file at
$Stdout. It can be run using piping as explained in Section
C.2.4. Control's normal output is sent to a scratch file called
CONSVA.SCRATCH.

CONSVA serves two purposes. First, it allows control systems
to be described using the block-diagram methods of CONTROL. It
translates this information into the K, §, and C matrices required
by SVA. For digital systems, it also provides the continuous
matrices AC and BC. The second function of CONSVA is to generate
all the information required by SVA to do normalized partial-sum
gradients.

The following two sections provide more detail about what must
be done to use SVA through CONTROL. Section C.2.1.1 discusses the
form which the control system ﬁust take in order for CONSVA to
work. Section C.2.1.2 discusses how the partial-sum gradients are

computed.
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C.2.1.1 Restrictions

The type of control system described by the CONTROL input file

must conform to all the assumptions in SVA. This is especially

important for digital systems. Figure C.1 shows the necessary

format for the control system.

but actually most of the restrictions represented graphically in

Figure C.1 are already a part of CONTROL.

restrictions are added to those imposed by CONTROL:

1.

You must specify an open—-loop analysis (SYSTEM=1), with
the 'mixed' option (MIXED=1). (NOTE: Digital

systems may also be analyzed with SYSTEM=2, but the
gradients for these systems will not be correct.) The
namelist variable FRPS 1s used to specify that singular
values are desired. FRPS = 3, &4, or 5 specify 3 possible
types of singular value analysis; these will be explained
later.

You must create the block diagram, thin the y vector, and
thin the u vector in such a way that the equation

u=-y (C.13)

will "close the loop" properly and create the closed-loop
system that you're attempting to analyze. Thus both the

dimensions of y and u and the sequence (or order) of there

elements must match up exactly. Obviously Equation (C.13)
also has implications about the signs of the various
interconnections. For instance, if you have a CONTROL
input file which correctly yields the closed-loop
eigenvalues of the system, and you simply break the right
loops to get the open-loop system represented in Figure
C.1, it will be wrong because the SVA program assumes that
there is a minus sign in the feedback path.

None of the variables being fed back (represented by
CONTROL's y vector) can include control-position (u
vector) elements. Very simply, this means that the
augmented system resulting from this run through CONTROL
must look like this:

x = Ax + Bu, (C.14)

Cc.8

This may look a little restrictive,

E ]

The following additional




For output node singular values:

=———=] order

zero | Dynemic |

et e R B contimer L) RS, ) St L
Blocks holds I A,B,H,G,F I
|
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NOTE: CONSVA can compute partial-derivative expansions only
only for the structure shown below.

For input node singular values:

C
———= == _—— e e e ——y

zero |

i |
Continuous Dynamic Continuous + Digital

—_—

Blocks AM;t;i;e; Blocks Blocks ¥
holds | it |
| ' |

b e e v — . — — — —— — — — — —— — a—— — —)

Figure C.1l: Structure of control system for input to CONSVA
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5.

y = Hx. (C.15)

the F matrix must be zero, and setting u=-y and C=H must
transform the above equations into the following
representation of the system:

X = Ax + Bu, (C.16)

u = -Cx. (C.17)
In CONSVA, the namelist variable IPT takes on a special
meaning in addition to it's normal CONTROL meaning. 1If
IPT=0, then no extra printout will be given from SVA. If
IPT=1, a data echo will be printed out by SVA. This is
very useful initially, to verify that everything's
working. Finally, if IPT=2, the data echo for IPT=1

plus an echo of the matrices A, B, and C will be

printed out.

The namelist variables IFREQ, FFREQ, DELFRQ, DIGITL, and
DELT are passed on to SVA, so they should be specified
with care. They mean the same things that they mean to
CONTROL. The singular value analysis will proceed between
IFREQ and FFREQ. If you don't want to have to wait
forever for SVA to run, you had better specify DELFRQ =
1.2 or greater so that the number of points computed will
be relatively small.

The following additional restrictions must be observed if gradients

are desired. Restriction 7 arise because CONSVA cannot set up

gradients for systems that yield the output-node return difference

matrix if the system is digital.

6.

The namelist variable CMAT must be = 0. This restriction
applies to continuous as well as digital systems, whether

the return difference matrix is at the input or the output
node.

If you're analyzing a digital system you must break all
loops at zero-order holds. This has several implications:

a. Locations of the loop breaks are NOT arbitrary.

b. The following namelist variables in CONTROL are
restricted as follows:

NUC = ZOH
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NZTOU = O

NYZTOK = 0

C.2.1.2 Partial-Sum Gradients

The parameters for which gradient plots are to be computed are

tack the information to be described onto the end of you're
(otherwise sort-of standard) CONTROL file and you're in business.
Sections C.2.2 and C.2.3 will describe the necessary variables and
their formats.

CONSVA provides the information described in Section C.1.2,

formatted and ready for SVA to read. It computes the derivatives

Ja ab 3c
ij ij ij
3 5% ° and 5

for each p specified by first introducing a Ap (small perturbation

in p). It then recomputes K, §, and C . Finally, it approximates
the above derivatives for all i,j by computing

Aa Ab

13 13 13
- & M-

The size of Ap is governed by the variable PERCENT. The default for

Ap is 1% of p, but you may choose a different percentage.
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C.2.2 Definitions

FRPS:

NUMGRADS:

LABEL:

CODE:

IROW:

ICOL:

PERCENT:

CONTROL namelist parameter, used to indicate that
singular value analysis is desired set to 3, 4, or 5,
according to the directions in Section C.2.3.

Integer variable which tells CONSVA the number of
partial-sum gradients desired.

10-character label which must be supplied for each
gradient.

A one-character code variable which tells CONSVA the
location of the parameter for which a partial-sum
gradient is to be computed. CODE can take on the
following values:

A A matrix element (where A is the A matrix given
in the input file to CONTROL)

B : B matrix element (where B is the B matrix given
in the input file to CONTROL)

H: H Tt e Tt H tt
F: F T 1 te F L
N : Numerator coefficients in block diagram

(NUMER matrix in MIXED option)

D : Denominator coefficients in block diagram
(DENOM matrix in MIXED option)

G : Block diagram gains
(GAIN matrix in MIXED option)

Row in matrix indicated by CODE

Column in matrix indicated by CODE (If CODE=G, ICOL is
ignored and IROW is the desired element of the gain
matrix)

Percent variation used to determine the partial
derivative expansion. If not specified, PERCENT
defaults to 1%. An entry of 10.0 would represents

10%. For parameters that have linear effects on matrix
elements (which are the vast majority), PERCENT will
have no effect.
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C.2.3 Input Format

Set up a CONTROL input file, using the guidelines in the

previous sections. In the namelist, set FRPS as follows:

FRPS = 3 for unscaled singular values

FRPS = 4 for singular values that are optimally scaled at
each frequency ("structured” singular values)

FRPS = 5 for singular values that are scaled according to a

user-input D matrix which is constant with
frequency. (See Section 4.2.1).

Directly after the control data file information, a line
containing NUMGRADS in IS5 format is necessary. If NUMGRADS=0, no
partial-sum information will be computed. If NUMGRADS#0, two lines
are needed for each of the NUMGRADS partial-sum gradients:

LINE 1: LABEL [ in (A10) format ]
LINE 2: CODE, IROW, ICOL [ (4X, Al, 21I5) format ]
'Stacked' cases of CONSVA can be run, and will result in stacked
runs of SVA.
EXAMPLE: You've got a system with 5 states and 2 controls. To it
you append 10 blocks to form a control system. You want to look at
gradients for the following elements:

A(3,2), B(4,1), NUMER(10,1), DENOM(3,6), and GAIN(2).
The input you should append to your CONTROL input file is
5
LABEL1

A 3 2
LABEL2

B 4 1
LABEL3

N 10 1
LABEL4
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D 3 6
LABELS

G 2
Notice that

A 6 3
would be an invalid entry because, even though the augmented matrix
is larger than 5 X 5, only the elements of the original A can be
specified. Other elements In the augmented A will be specified
indirectly by using 'N', 'D', 'G', 'B', 'H', or 'F'.

If FRPS = 5, one additional line of data is required after the
gradient information. This line must contain unformatted, real
numbers, which represent the diagonal elements of the scaling
matrix, D, as discussed in Section 4.2.1. This is the last line of

each run when FRPS = 5. The dimension of D is determined by the

number of thinned inputs and outputs in the system description.

C.2.4 To Run

BATCH:
Create the CONTROL input file. This file should conform to the
specifications of Sectioms C.2.1, C.2.2, and C.2.3. Then type

BATCH +NOTIFY QUEUE=SLOW 'RUNCONSVA INPUT=CONTROLinputfile &
OUTPUT=SVAoutputfile PLOT=SVAplotfile'

When RUNCONSVA is used, CONSVA output is piped directly into SVA, so
the SVA input file is lost. The output file will contain a short
summary of the SVA run, including a table of the parameters

specified using CODE, IROW, and ICOL, in their order of importance
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as determined by the og-gradient technique explained in Section
4.2.3. The plot file will contain unformatted information used to
run SVA interactively. To look at plots, type the following at the
interactive prompt:

SVA
The ELXSI will respond with:

Type 'P' if this is a plot-only run:

your response should be 'p' or 'P', be;ause the plotfile has
already been created by RUNCONSVA, and this run of SVA is oﬁly to
look at plots. The program will then prompt for the plotfile
name. You should give it the name which you specified in the
RUNCONSVA statement (at PLOT=). An interactive run of SVA begins at
this point. SVA is a menu-driven program so no further explanation
is given here.

If the program does not run properly, list the file
CONSVA.SCRATCH and look at the last line in the file. This line
will contain an error meséage if the input file to CONSVA is
wrong. If there 1s no error message, check the SVAoutputfile for
error messages.

An alternate way to run SVA is to specify an SVA input file
name and give it to SVA directly. This can be done either in batch
or interactively. First, type

CONTROLinputfile> CONSVA >SVAinputfile

The SVAinputfile can then be used as described in Section C.4.4.
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You can also pipe the CONSVA output directly into SVA interactively,

by typing
CONTROLinputfile> CONSVA | SVA >SVAoutputfile

The plotfile will go to a file named SVA.PLOTFILE in this case.
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C.3 Input to SVA Using PRESVA
C.3.1 Discussion

If you have created the matrices A, B, and C (and AC and BC if
the system is digital), you can run PRESVA to do all the rest of the
work for you. PRESVA can also be used as a model for subroutines
which do the same type of set-up, if you want to write a program
that automatically interfaces some control design program to SVA.
PRESVA is a very simple interactive program which allows you to
describe element-gradients, partial-sum gradients, frequency ranges,
. dimensions, etc. From this information it creates an SVA input
file. The code is self-documenting and relatively short, so it
would be very simple to modify it to take information from a program
such as CONTROL. PRESVA should not be considered a production tool
unless gradients will not be computed, in which case it is probably

the easiest way to go.

C.3.2 Definitions

The only term used by PRESVA whose definition will not be
obvious is "coefficient™. Partial-sum gradients are comprised of

coefficients times element gradients, as follows:

g 9g ag (
Cl » + o000 + C2 =~ 4 oee 4+ C3 + eee, C.18)
aaij Bbij Bcij

These coefficlents are really just the aaij/ap, abij/ap and

acijlap's described in Section C.1.2.

c.17



C.3.3 Input Format

A data file must be provided which contains the

matrices K, B, and C , in that order if the system is continuous.

If the system is digital the required matrices are AC,

BC, A,

1l

, and C 1in that order. No blank lines should appear in the
file. The format for each matrix must be such that it can be read
using the following FORTRAN code, assuming the dimension of the

matrix is N x M :

DO 10 I=1,N
10 READ(7,20) ( B(I,J) J=1,M )
20 FORMAT(3E24.12)

C.3.4 To Run

create the data file described above. Then simply type
PRESVA
at the interactive prompt. Answer all questions to create an SVA

input file. Run this file using the instructions in Section C.4.4.
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C.4 Data File Input to SVA
C.4.1 Discussion

Creating a data file fdr SVA from scratch is a little bit
tricky if you are going to do partial-sum gradients. If you're not,
it's probably the most straight-forward approach. Gradient
definition in the SVA data file is a little confusing because it
utilizes techniques designed specifically to save space in both the
file and in the program, and to make the code more efficient. If
you have already created a data file by the methods of Sections C.2
or C.3, skip directly to Section C.4.4 to see how to run SVA. If
you are willing to get into some nitty-gritty, read on.

The difficulty that has been incorporated into both SVA and its
input file 1s 'row packed' matrix referencing. Row packing is a way
to number the matrix elements so that one number will give you
the location of each element. A simple example is a 4 x 4 matrix;
to reference any elements using row-packed notation, the elements

would be numbered like this:

1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16
So the 'row-packed location' of element (3,2) is 10. Naturally it
is necessary to know the dimensions of the matrix to properly
specify the location; for instance, the row-packed location of

element (3,2) of a 4x2 matrix is no longer 10, but 6:
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SVA contains a further clever complication which 1is useful for
describing the partial-derivative expansion of a parameter. the

entire control system is referenced using 'super-packed' notation.

'Super—packed' can best be described by example. The elements

of A, B, and C for a 3 state, 2 control system are numbered as

follows:
_ 1 2 3
A= 4 5 6
7 8 9
10 11
B= 12 13
14 15

C= 16 17 18

Obviously this is ridiculous if you're trying to do it by hand,
especially if the matrices are large. That is why the self-
documenting program PRESVA has been provided, to make the
conversions from normal methods of indexing to the above method.
For your application you may need to write a "filter" similar to
CONSVA which utilizes the code in PRESVA to create an input file to
SVA. Just get a listing of PRESVA to see how it works. The
advantages to my indexing technique are very compact, pithy data
files and smaller, more efficient, cleaner code.

Knowing what 'row-packed location' and 'super-packed location'
mean complete the information required to describe the input file to

SVA. In the following, we'll use the notation A [K] to denote the
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row-packed location in a matrix, and A,B,C [K] to denote the super-

packed location of an element in the A, B, or C matrix.

C.4.2 Definitions

Two Iinteger arrays provide all the necessary information to
specify element-gradients. MI is a four—element array specifying

the !?trices of }pterest.

I=1 refers to the A matrix

I=2 refers to the E matrix

I=3 refers to the C matrix

I=4 refers to the P matrix, which is described
in References [l1] and [8].

If MI(I) = 0, then matrix number I is not of interest - no gradients
from that matrix are desired. If MI(I) = N, then there are N
elements in matrix number I for which gradients are desired.

The locations of the elements for which gradients are to be
computed are stored in a 4 row integer array called LES. Each row
of LES corresponds to one of the 4 matrices as described above. For
instance if MI(2)=4 then LES(2,J) for J=1,4 will contain the row-
packed locations in B for which gradients are desired. SVA will

compute the following set of gradients:

dg
- J=1,MI(1);
d A [LES(1,0)]
dg
- J=1,MI(2);
d B [LES(1,J)]
dg
= J=1,MI(3); and
d C [LES(1,J)]
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J=1,MI(4).
d P [LES(1,J)]

C.4.2.1 Definitions for Partial-Sum Gradients

The organization of the information for partial-sum gradients
is more complicated than for element gradients, because of all the
information that must be provided. It is stored in two arrays, a
two-dimensional real array called FACS and a two-dimensional integer
array called LOCS. Each row of LOCS corresponds to a row in FACS.
The Nth row of both LOCS and FACS gives information about the Nth
partial derivative expansion for which a o-gradient plot will be

computed. We will describe the Nth row.

LOCS(N,1) contains the number of terms in the partial-derivative
expansion of the gradient of interest, 3c/3p

Because it 1s a counter, we'll call LOCS?N,1§ K in the
rest of this description.

LOCS(N,2) through LOCS(N,K+1) contain the super-packed
locations of the elements aj 3 bij’ and cy3 which make

up the terms of the partial-derivative expansion of
dg/3p.

FACS(N,1) contains the nominal value of the parameter p.

FACS(N,2) through FACS(N,K+1) contain the coefficients of the
Nth partial derivative expansion. See Section C.1.2;
these are the terms aaij/ap, abij/ap, and acij/ap-

using the notation we've set up for super-packing, the equation for

the partial derivative expansion of gradient number N is simply
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30 K 90

— = { T FACS(N,{ + 1)% ——— = —}FACS(N, 1) ,
Gey/py) 4oy 3{a,B,C}[LOCS(N,1 + 1)]
(C.19)
where K = LOCS(N,1l).

C.4.3 Input Format

These are the contents of an input file to SVA (formats appear
to the right of each line):
1: BATCH (A)

The word BATCH, in caps, fully left-justified, must appear as
the first line of any data file.

2: TITLE (A)
Any 80-character title must be placed on line 2.

3: NSM, NC, NSU, NCU, NO, NS, M (715)

NSM

Number of states in the control system
(Dimension of x vector)

NC = Number of controls in the system
(Dimension of u vector)
NSU = Number of states in continuous portion of a sampled-
data system (Dimension of AC; Ignored if DELT = 0.)
NCU = Number of controls in continuous portion of a

sampled-data system (Number of columns in BC;
Ignored if DELT = 0.)

NO, NS, M = Needed only if P-gradients are to be computed;
see References [l] and [8] for descriptions of these
variables.
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4: TpPO, ISC, IG (31I5)
IPO specifies the various printout options:

IPO

1 data echo; no plotfile output;
= 2 plotfile output; no data echo;
= 3 data echo and plotfile output;
= 4 game as 3 plus matrix echo.

ISC specifies the various scaling options:

1 unscaled singular values;

=2 optimally scaled singular values
("structured,” frequency dependent scaling);

= 3 user-input scaling matrix, D
(see Section 4.2.1).

IG specifies the singluar value for which the analysis 1s done.

IG =0 or 1 minimum singular value;
IG = 2 second-smallest singular value;
IG =n nth-smallest singular value.
5: NP, FREQl, FREQ2, DELT (15, 3F10.5)
NP = Number of logarithmically spaced frequency points at
which to compute the g-plot and g-gradient plots.
FREQl = Initial frequency for the plots.
FREQ2 = Final frequency for the plots.
DELT = Sample time for sampled-data systems. NOTE: DELT

acts as a FLAG for digital systems as well as
describing the sample time. So DELT must be = 0.0
if the system 1s continuous.
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6: NUMPS (I5)

Number of partial-derivative expansions to be input

7 through ?:

For N = 1, NUMPS:

a: LABEL (A10)
Any 10-character label.
b: FACS(N,1), LOCS(N,1) (E10.6,15)

FACS(N,1) = Nominal value of parameter p

LOCS(N,1) = Number of terms in the Nth partial-derivative
expansion.
c: (LOCS(N,k+1), k=1,LOCS(N,1)) (1515)

See Section C.4.2.1.
d: (FACS(N,k+1), k=1,FACS(N,1)) (6E12.6)

See Section C.4.2.1.

next 4 lines (I=1,4):
MI(I), (LES(I,J), J=1,MI(I)) (15I5)

See Section C.4.2.1 for a description of MI and LES.

Directly after all the above information, the matrices must appear
in the following order (see Section C.3.3 for an explanation of the

format:
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AC matrix NSU x NSU (if DELT .ne. 0.0)

BC matrix NSU x NCU (if DELT .ne. 0.0)

A matrix NSM x NSM

B matrix NSM x NC

C matrix NC x NSM

D matrix diagonal elements (1 x NC, unformatted)
The D matrix diagonal elements are only needed if
user—input scaling (ISC = 2) has been specified in
line 4. Note that only the diagonal elements of
the square matrix D are required; see Section
4.2.1 for details on scaling.

This completes the input for one run through SVA. Lines 2-end
may be repeated as many times as desired to produced stacked runs

for batch mode execution.

C.4.4 To Run

SVA can be run using any valid data file, whether it is a
result of CONSVA (Section C.2), PRESVA (Section C.3), or any other
method that conforms to the formats given in this section. The
recommended way to use SVA is as follows:

1) Run SVA in batch mode. This is very simple to do, and for

large systems it is necessary, because runtimes are
relatively long.

2) Look at the SVA output file. This contains a quick summary
of the run.

3) Run SVA interactively to get plots.
For small systems (NSM < about 20) steps 1 and 2 can be skipped.
SVA creates a "plotfile"” during the first run (STEP 1). This
file 1s then simply read in during subsequent runs (STEP 3) so that
the time-consuming computations are only done once. Once the

plotfile has been created, the input file is no longer needed. Step

C.26




3 can be repeated any number of times, so that plots can be viewed

interactively over and over.

Step 1

To run SVA in batch mode, type

BATCH +NOTTIFY QUEUE=SLOW 'RUNSVA INPUT=inputfile &
OUTPUT=outputfile PLOT=plotfile'

SVA creates a temporary plotfile called SVA.PLOTFILE during batch
execution. RUNSVA then renames this file to the plotfile name

specified. List out the shellfile RUNSVA to see how this is done.

Step 2

The output file contains a short summary of the results of the
run. The minimum of the o-plot is given, and translated into

multiloop gain and phase aargins. The normalized gradient
information is then used to make a table of elements in their order
of importance. This table gives the following information:

COLUMN 1:

A description of the matrix element._ This 1is_either in the form
P(1,j) for element gradients (where P = A, B, or C ) or it is the
label specified on input for partial-sum gradients.

COLUMN 2:

The frequency at which a change in the parameter has it's
greatest effect.

COLUMN 3:
The minimum singular value of the return difference matrix at
this frequency.

COLUMN 4:
The normalized singular value gradient, ((aglap) .
frequency.

p|, at the same

COLUMN 5:

The percent variation in p (Ap/|p|*100) needed to drive the g-plot
to ¢ = .2 has been chosen as a minimum singular value that would be
undesirable. During interactive runs, this minimum can be changed.
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Step 3

To run SVA interactively, simply type

SVA
at the interactive prompt. The first question asked by SVA is

AType 'P' 1f this is a plot-only run:
if a plotfile has been created as described in step 1, the answer to
this question is 'p'. If you are running a small system and
skipping the batch run, simple type carriage return. You will then
be prompted for an input filename and a plotfile name. If you are
doing a plotfile run, the input file is not necessary and will not
be asked for.

In both plotfile runs and full computation runs, the next output
you will receive is a menu, which is self-explanatory and will not

be explained further here.
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C.5 Calling SVA as a Subroutine.

For certain applications, calling SVA's main subroutine directly
may be the most advantageous method. This subroutine 1s called
SVANAL. The following description gives a complete calling sequence
and guide to the input data required by SVANAL. Most of the
information required is exactliy the same as the information
described in Section C.4; read Section C.4 before reading on. The
subroutine SVANAL performs the following functions:

1. It does an optional echo check of all the input data.

2. It initializes all matrices and their dimensions. All matrices
must be column-packed for use by this program, so SVANAL creates
the column-packed form of the input matrices. It also creates
the H matrix, which is used by Newsom and Mukhopadyay (see
References [1] and [8]). The user supplies H matrix from the
equation

z = Hx (C.20)

where z is the output vector of dimension NO and x; is the state
vector, of dimension NS. SVANAL creates

" ! T

H | o
H = [——--—+—-—-] (NO+M x NS#M)  (C.21)
V) ‘ 1
where H is the observer matrix defined in Equation (C.19) and I

is an M x M identity matrix. This matrix is only,.created if
gradients with respect to controller parameters (P matrix) are

desired (see [1] and [8]). The user can also get a printout of
H 1f desired.

3. It calls the subroutine SVCOMP, which handles the calculation of
the singular values and their gradients.

4. It outputs singular value analysis information in matrix form.
The following information is generated by SVCOMP (and the
subroutines to which it is linked):

a) Minimum singular value and minimum eigenvalue at each
frequency.
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b) Singular value gradients with respect to selected
elements of the system and controller matrices, at each
frequency

C.5.1 Calling Sequence

CALL SVANAL ( ABAR, MA, BBAR, MB, CBAR, MC, H, MH, D, NSM, NC,

NO, NS, M, FREQl, FREQ2, NP, MI, LES, NUMPS, LABELS,
LOCS, FACS, DELT, AC, MAC, BC, MBC, NSU, NCU, IPO,
ISC, LUN1, LUN2, NWKDIM, WK, IWK, SVMAT, MSV )

C.5.2 Input Arguments

ABAR

BBAR

MB

CBAR

MC

MH

Variable dimensioned two-dimensional real array containing
the augmented system matrix, A. A has dimensions (NSM x
NSM). For discrete systems, ABAR must contain the state
transition matrix, ¢.

Maximum first dimension of the array ABAR as given in the
DIMENSION statement of the calling program.

Variable dimensioned two-dimensional real array containing
the augmented control effectiveness matrix, B. B has
dimensions (NSM x NC). For discrete systems, BBAR must
contain the discretized control power matrix, T.

Maximum first dimension of the array BBAR as given in the
DIMENSION statement of the calling program.

Variable dimensioned two-diﬁensional real array containipg
the augmented feedback matrix, C. C has dimensions (NC x
NSM).

Maximum first dimension of the array CBAR as given in the
DIMENSION statement of the calling program.

Variable dimensioned two-dimensional real array containing
the augmented observer matrix, H. This matrix is not
required unless gradients with respect to parameters in

P are desired, but the variable name must appear in the
call statement.

Maximum first dimension of the array H as given in the
DIMENSION statement of the calling program.
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D -
NSM -
NC -
NO -
NS -
M -

NC x NC scaling matrix (for ISC = 2 option only).
Dimension of the augmented state-variable vector.
Dimension of the control vector.

Dimension of the output vector.

State-vector dimension before augmentation.

Order of the controller-dynamics equation.

NOTE: The variables H, MH, NO, NS, and M must appear in the call
statement to SVANAL, but they do not have to be initialized if
gradients with respect to parameters in P are not desired. NO, NS,
M and NC are consistent with the definitions given in Reference [8].

FREQL -
FREQ2 -

NP -

MI -

LES -

NUMPS -

LABELS -

LOCS -

Lowest frequency for the singular value analysis.
Highest frequency for the singular value analysis.

Number of frequencies between FREQl and FREQ2 inclusive
where singular values, eigenvalues, and gradients are to
be calculated.

Integer vector whose dimension is 4. Each entry indicates

the number of gradients desired from the A, B, C, and

P matrix respectively. This input argument 1is described
in more detail in Section C.4.2.

Integer array whose first dimension must be 4. Second
dimension must be max, (MI(k)). Entry (k,i) indicates the
row-packed location (counting across the rows) in the k-th

matrix (A, B, C, or P) of the parameter with respect to
which a gradient plot is desired. This input argument is
described in more detail in Section C.4.

Number of desired partial-sum gradients.

CHARACTER*10 array with 25 elements. The first NUMPS
elements should contain the labels for the partial-sum
gradients.

Integer array of dimension (25 x 100). Each row contains
information on one of the NUMPS partial-sum gradients.
The first column tells how many coefficients are in the
partial-derivative expansion for the gradient. Each
column after the first_contains the super—-packed location
of the elements of A, B, and C, that are in the
expansion. See Section C.4.2 for more detail.
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FACS -

DELT -

AC -

MBC -

NSU -

NCU -

NOTE:

IPO -~

IPO

IPO

IPO

Real array of dimension (25 x 100). Each row contains
information on one of the NUMPS partial-sum gradients.

The first column gives the nominal value for the parameter
with respect to which the gradient is being taken. Each
additional column gives the coefficents of the partial
derivative expansion equation. See Section C.4 for more
detail.

Sampling interval for sampled-data systems. This variable
must be set to zero for continuous systems.

Variable dimensioned two-dimensional real array containing
the continuous system matrix. AC has dimensions (NSU x
NSU). AC is only used when digital systems are being
analyzed.

Maximum first dimension of the array AC as given in the
DIMENSION statement of the calling program.

Variable dimensioned two-dimensional real array containing
the continuous control power matrix. BC has dimensions
(NSU x NCU). BC is only used when digital systems are
being analyzed.

Maximum first dimension of the array BC as given in the
DIMENSION statement of the calling program.

Dimension of the continuous state-variable vector.

Dimension of the continuous control vector.

The variables AC, MAC, BC, MBC, NSU, and NCU are only
necessary for digital systems. However, the variable names
must always appear in the call statement to SVANAL. MAC and
MBC should be set to 1 if AC BC are dummy variables, to
insure proper storage allocation.

N
.

Integer variable indicating the type of output desired.
0 : All printout suppressed.

1: Input data echo only. This printout is directed to
logical unit number LUN1.

Printout to plotfile only. This printout is
unformatted, and is directed to logical unit number

LUN2. The plotfile is used for plot—only runs by
SVA.
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IPO = 3

IPO = 4

ISC -

ISC =1

LUN1 -

LUN2 -~

Both input data echo and plotfile information are
printed out to their respective logical unit numbers.

e

: Same as IP0O=3, except input matrices are also echoed.
Integer variable indicating the type of scaling desired
: unscaled singular values;

: structured singular values;

: user—-input scaling matrix, D (see Section 4.2.1).

Logical unit number for the matrix data echo and error
output. This variable should be set to the LUN of the
terminal.

Logical unit number for the data file printout. The calling
program must open and initialize the data file
referenced by LUN2.

NOTE: LUN1 must be initialized to allow error statements. LUN2
need not be initialized if IPO < 2.

NWKDIM -

IWK -

MSv -

Dimension of the work vector, WK, as given by the
DIMENSION statement of the calling program. NWKDIM must
be approximately

21+NSM2 + 19+NCZ + 23+MeN + 31+M + 15

SVANAL informs you of how many elements are actually used,
and gives an error message if NWKDIM is not big enough.

real work vector dimensioned at least NWKDIM in the
calling routine.

integer work vector dimensioned at least (2+NC + 2M +
NSM) in the calling routine.

Maximum first dimension of the array SVMAT as given in
the DIMENSION statement of the calling program. MSV
must be greater than NP.
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C.5.3 Output Arguments

SVMAT - Two-dimensional array containing all output information.

SVMAT must be dimensioned at least

[NP x (MI(L1)+MI(2)+MI(3)+MI(4)+3)]

in the calling routine. Data is organized as follows:

SVMAT(T1,1) : frequency, in rad/sec, I=1 to NP

SVMAT(I,2) : minimum singular value, I=1 to NP

SVMAT(I,3) : wminimum eigenvalue, I=1 to NP

SVMAT(I,J+3) :
gradients with respect to the
NUMPS parameters for which
partial-derivative expansions
were computed J=1

SVMAT (I, J+NUMPS+3) :
gradients with respect to
parameters in the A matrix,

-
ihn
— -

SVMAT(I,J+NUMPS+MI(1)+3) :
gradients with respect to
parameters in the B matrix,

= o
[ |
— -

SVMAT(I,J+NUMPSHMI(1)+MI(2)+3) :
gradients with respect to
parameters in the C matrix, J=1

I=1

SVMAT (I, J+NUMPSHMI (1)+MI(2)+MI(3)+3) :
gradients with respect to
parameters in the matrix, J=1

I=1

SVMAT (T, J+MI(1)+MI(2)+MI(3)4MI(4)+3) :

scaling (D) matrix diagonal elements, included

to

to
to

to
to

to
to

to
to

NUMPS

MI(1)
NP

MI(2)
NP

MI(3)

MI(4)
NP

only if ISC=1, J=1 to NC
I=1 to NP.
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C.5.4 COMMON Blocks

The COMMON blocks employed by SVANAL are:

GRADSTF, SAVE, and PARTIALS

C.5.5 Error Messages

(1) If the information in LOCS is not consistent with the matrix
dimensions, the following message will be printed:

Bad matrix reference in LOCS:
Check partial derivative expansion equations

(2) If the work array is not large enough, the following message
will be printed:

THE WORK ARRAY IS NOT LARGE ENOUGH IN SVCOMP
THE MAX WORKSPACE IS <Y> AND THE LAST WORK LOCATION IS <X>

<X> is the amount of additional space needed to run the program.

The above two errors are fatal; the program will abort if they
are detected. the following errors will cause slight
discontinuities in the plots, but otherwise will not cause any
problems.

(3) If errors occur within the ORACLS routine SNVDEC, the following
message will be printed:

PASS NO. <X> THERE IS AN ERROR IN CALL TO SNVDEC, IERR = <I> IN
SNGVDI

IERR can be looked up in the ORACLS manual; it usually indicates a
numerical convergence problem.

(4) If (Is-A) is not invertable at some s=jw, the following message
will be printed:

SINGULARITY OCCURED IN ISMINA

(5) If the subroutine MAKEUV has numerical difficulties at some
frequency, it will print the message

MAKEUV FAILED TO ANALYZE UV MATRIX
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These numerical problems can be ignored unless they happen more than
two or three times during a run.

C.5.6 Subroutines Employed by SVANAL

The following subroutines from ORACLS and FRL are employed.

FRL - SVCOoMP, ISMINA, SVGRAD, DIGSVG, EXTRACT, DLESELM, MAKEUV,
REALEL, BLKDIAG, PUTMAT

MODIFIED
ORACLS - PRNT1, LNCNT1, SCALEM, SNVDEC, SYSSLV, SCALEM

MODIFIED
EISPAK - ELTRAN

ORACLS - ADD, NULL, MULT, TRANP, JUXTR, JUXTC, UNITY, EQUATE,
EXPINT, EIGEN, GELIM, ELMHES, BALANC, HQR, DETFAC, SHRSLV,
SCHUR, INVIT, ELMBAK, BALBAK, NORMS, MAXEL, HSHLDR, BCKMLT

C.5.7 Subroutines Employing SVANAL

None
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